scholarly journals Evaluation of SARS-CoV-2 entry, inflammation and new therapeutics in human lung tissue cells

2022 ◽  
Vol 18 (1) ◽  
pp. e1010171
Author(s):  
Judith Grau-Expósito ◽  
David Perea ◽  
Marina Suppi ◽  
Núria Massana ◽  
Ander Vergara ◽  
...  

The development of physiological models that reproduce SARS-CoV-2 infection in primary human cells will be instrumental to identify host-pathogen interactions and potential therapeutics. Here, using cell suspensions directly from primary human lung tissues (HLT), we have developed a rapid platform for the identification of viral targets and the expression of viral entry factors, as well as for the screening of viral entry inhibitors and anti-inflammatory compounds. The direct use of HLT cells, without long-term cell culture and in vitro differentiation approaches, preserves main immune and structural cell populations, including the most susceptible cell targets for SARS-CoV-2; alveolar type II (AT-II) cells, while maintaining the expression of proteins involved in viral infection, such as ACE2, TMPRSS2, CD147 and AXL. Further, antiviral testing of 39 drug candidates reveals a highly reproducible method, suitable for different SARS-CoV-2 variants, and provides the identification of new compounds missed by conventional systems, such as VeroE6. Using this method, we also show that interferons do not modulate ACE2 expression, and that stimulation of local inflammatory responses can be modulated by different compounds with antiviral activity. Overall, we present a relevant and rapid method for the study of SARS-CoV-2.

2021 ◽  
Author(s):  
Judith Grau-Expósito ◽  
David Perea ◽  
Marina Suppi ◽  
Núria Massana ◽  
Ander Vergara ◽  
...  

AbstractThe development of physiological models that reproduce SARS-CoV-2 infection in primary human cells will be instrumental to identify host-pathogen interactions and potential therapeutics. Here, using cell suspensions from primary human lung tissues (HLT), we have developed a platform for the identification of viral targets and the expression of viral entry factors, as well as for the screening of viral entry inhibitors and anti-inflammatory compounds. We show that the HLT model preserves its main cell populations, maintains the expression of proteins required for SARS-CoV-2 infection, and identifies alveolar type II (AT-II) cells as the most susceptible cell targets for SARS-CoV-2 in the human lung. Antiviral testing of 39 drug candidates revealed a highly reproducible system, and provided the identification of new compounds missed by conventional systems such as VeroE6. Using this model, we also show that interferons do not modulate ACE2 expression, and that stimulation of local inflammatory responses can be modulated by different compounds with antiviral activity. Overall, we present a novel and relevant physiological model for the study of SARS-CoV-2.SynopsisEx vivo physiological systems for the study of SARS-CoV-2-host interactions are scarce. Here, we establish a novel model using primary human lung tissue (HLT) for the analysis of cell tropism and identification of therapeutics.The HLT model preserves main cell subpopulations, including alveolar type-2 cells, and expression of SARS-CoV-2 entry factors ACE2, CD147, and TMPRSS2.The HLT model is readily susceptible to SARS-CoV-2 entry.Antiviral testing in the HLT model allows the identification of new candidates missed by conventional systems.Local inflammation is supported in the HLT model and offers the identification of relevant anti-inflammatory compounds for SARS-CoV-2 infection.


2021 ◽  
Author(s):  
Alejandro Peralta-Garcia ◽  
Mariona Torrens-Fontanals ◽  
Tomasz Maciej Stepniewski ◽  
Judit Grau-Expósito ◽  
David Perea ◽  
...  

Since the start of the COVID-19 outbreak, pharmaceutical companies and research groups have focused on the development of vaccines and antiviral drugs against SARS-CoV-2. Here, we apply a drug repurposing strategy to identify potential drug candidates that are able to block the entrance of the virus into human cells. By combining virtual screening with in vitro pseudovirus assays and antiviral assays in Human Lung Tissue (HLT) cells, we identify entrectinib as a promising antiviral drug. We found that part of the antiviral action of entrectinib is mediated by a non-specific mechanism, likely occurring at the viral membrane level. Such a profile could provide entrectinib with protection against the development of drug resistance by emerging SARS-CoV-2 variants.


2020 ◽  
Author(s):  
Qing Liu ◽  
Xiaoli Tian ◽  
Daisuke Maruyama ◽  
Mehrdad Arjomandi ◽  
Arun Prakash

ABSTRACTMicrobial metabolites produced by the gut microbiome, such as short-chain fatty acids (SCFA), can influence both local intestinal and distant lung physiology and response to injury. However, how lung immune activity is regulated by SCFAs is unknown. We examined fresh human lung tissue and observed the presence of SCFAs with large inter-individual and even intra-lobe variability. In vitro, SCFAs were capable of modifying the metabolic programming in both resting and LPS-exposed alveolar macrophages (AM). Additionally, since we hypothesized that lung immune tone could be defined through priming of the inflammasome (aka signal 1), we interrogated naïve mouse lungs for pro-IL-1β message and localized its presence within the alveolar space in situ, specifically in AM subsets, and in close proximity to alveolar type 2 epithelial (AT2) cells. We established that metabolically active gut microbiota, that produce SCFAs, can transmit LPS and SCFAs to the lung (potential sources of signal 1), and thereby could regulate lung immune tone and metabolic programming. To understand how murine lung cells sensed and upregulated IL-1β in response to gut-microbiome factors, we determined that in vitro, AM and AT2 cells expressed SCFA receptors, FFAR2, FFAR3, and IL-1β but with different expression patterns and LPS-inducibility. Finally, we observed that IL-1β, FFAR2 and FFAR3 were expressed both in isolated human AM and AT2 cells ex-vivo, but in fresh human lung sections in situ, only AM expressed IL-1β at rest and after LPS challenge. Together, this translational study using mouse and human lung tissue and cells supports an important role for the gut microbiome and SCFAs in regulating lung immune tone.


2021 ◽  
Vol 22 (24) ◽  
pp. 13592
Author(s):  
Alejandro Peralta-Garcia ◽  
Mariona Torrens-Fontanals ◽  
Tomasz Maciej Stepniewski ◽  
Judith Grau-Expósito ◽  
David Perea ◽  
...  

Since the start of the COVID-19 outbreak, pharmaceutical companies and research groups have focused on the development of vaccines and antiviral drugs against SARS-CoV-2. Here, we apply a drug repurposing strategy to identify drug candidates that are able to block the entrance of the virus into human cells. By combining virtual screening with in vitro pseudovirus assays and antiviral assays in Human Lung Tissue (HLT) cells, we identify entrectinib as a potential antiviral drug.


Allergy ◽  
1986 ◽  
Vol 41 (5) ◽  
pp. 319-326 ◽  
Author(s):  
H. Bergstrand ◽  
B. Lundquist ◽  
B.-Å. Petersson

2006 ◽  
Vol 50 (6) ◽  
pp. 2231-2233 ◽  
Author(s):  
Xing-Quan Zhang ◽  
Meredith Sorensen ◽  
Michael Fung ◽  
Robert T. Schooley

ABSTRACT Recently, antiretroviral agents directed at several steps involved in viral entry have been shown to reduce viral replication in vitro and in vivo. We have demonstrated a high level of in vitro synergistic antiretroviral activity for two entry inhibitors that are directed at sequential steps in the entry process.


2015 ◽  
Vol 6 (12) ◽  
pp. 6971-6979 ◽  
Author(s):  
Ahsan R. Akram ◽  
Nicolaos Avlonitis ◽  
Annamaria Lilienkampf ◽  
Ana M. Perez-Lopez ◽  
Neil McDonald ◽  
...  

A fluorescently labelled ubiquicidin peptide enables bacterial detection in human lung tissuein vitro.


Nanomaterials ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1868
Author(s):  
Anna Löfdahl ◽  
Andreas Jern ◽  
Samuel Flyman ◽  
Monica Kåredal ◽  
Hanna L Karlsson ◽  
...  

Silver nanoparticles (AgNPs) are commonly used in commercial and medical applications. However, AgNPs may induce toxicity, extracellular matrix (ECM) changes and inflammatory responses. Fibroblasts are key players in remodeling processes and major producers of the ECM. The aims of this study were to explore the effect of AgNPs on cell viability, both ex vivo in murine precision cut lung slices (PCLS) and in vitro in human lung fibroblasts (HFL-1), and immunomodulatory responses in fibroblasts. PCLS and HFL-1 were exposed to AgNPs with different sizes, 10 nm and 75 nm, at concentrations 2 µg/mL and 10 μg/mL. Changes in synthesis of ECM proteins, growth factors and cytokines were analyzed in HFL-1. Ag10 and Ag75 affected cell viability, with significantly reduced metabolic activities at 10 μg/mL in both PCLS and HFL-1 after 48 h. AgNPs significantly increased procollagen I synthesis and release of IL-8, prostaglandin E2, RANTES and eotaxin, whereas reduced IL-6 release was observed in HFL-1 after 72 h. Our data indicate toxic effects of AgNP exposure on cell viability ex vivo and in vitro with altered procollagen and proinflammatory cytokine secretion in fibroblasts over time. Hence, careful characterizations of AgNPs are of importance, and future studies should include timepoints beyond 24 h.


1998 ◽  
Author(s):  
Zhiwei Huang ◽  
Chee T. Chia ◽  
Cheong Hoong Diong ◽  
Sing Lee ◽  
Wei-Ming Zheng ◽  
...  

2021 ◽  
Vol 11 (2) ◽  
pp. 360-369
Author(s):  
Caide Xie ◽  
Tianjing Zhao ◽  
Liang Fang

In order to explore the high-resolution CT findings of leukemia pulmonary infiltration and chemotherapy outcomes and the in vitro study of human lung tissue, this paper selected a total of 120 clinically or surgically confirmed leukemia patients at the designated hospital of the study from December 2014 to December 2018, and divided them into three groups according to the random number table method: pulmonary infiltration group, chemotherapy outcome group and in vitro study group, with 40 cases in each group. The CT imaging features of the three groups of patients were observed and summarized respectively; the anomalous evaluation indexes of pulmonary parenchyma tissue abnormalities included CT halo sign, air crescent sign, lung segment consolidation, bronchial vascular bundle and nodules; the CT abnormalities such as thickening of the interlobular septum, bronchial interstitial thickening, nodular shadow, ground glassy change, and air cavity consolidation were selected as observation indicators. The results show that all cases have multiple solid nodules or multiple plaques, varying in number, size and distribution, in which 13 cases have multiple patchy shadows, 9 cases have multiple knots and 11 cases have multiple plaques and nodules; lesions are mainly distributed along the bronchial vessels in 21 cases, and 9 cases are along the center of the small leaves and 5 cases are randomly distributed; there are 13 cases that have frosted glass, in which 4 cases with pleural effusion, 9 cases with mold infection, show multiple patchy shadows with halo signs and layered mold balls. In summary, leukemia pulmonary infiltration has polymorphic high-resolution CT findings and chemotherapy outcomes; high-resolution CT imaging and in vitro studies of human lung tissue have important clinical and pathological research value for leukemia infiltration and chemotherapy outcome. The results of this study provide a reference for the further researches on high-resolution CT findings of pulmonary infiltration and chemotherapy outcomes and in vitro studies of human lung tissue.


Sign in / Sign up

Export Citation Format

Share Document