oxidative stabilization
Recently Published Documents


TOTAL DOCUMENTS

162
(FIVE YEARS 32)

H-INDEX

28
(FIVE YEARS 5)

Carbon Trends ◽  
2021 ◽  
pp. 100090
Author(s):  
Desirée Leistenschneider ◽  
Peiyuan Zuo ◽  
Yuna Kim ◽  
Zahra Abedi ◽  
Douglas G. Ivey ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1151
Author(s):  
Durga Parajuli ◽  
Hisashi Tanaka ◽  
Koji Sakurai ◽  
Yukiya Hakuta ◽  
Tohru Kawamoto

Prussian blue analogs (PBA) are widely studied for radioactive cesium decontamination. However, there are fewer works related to their post use storage. Considering the oxidative stabilization of the material after the selective uptake of Cs, the thermogravimetric properties in powder and bead form, with various Cs and other alkali metal ions adsorbed, and various heating rates were studied. TG-DTA taken in dry air condition shows an exothermic decomposition at ~270 °C. This temperature varied with the heating rate, mass, and the proportion of adsorbed ions. The best condition for complete oxidation of Prussian blue (PB) is found to be a gradual oxidative decomposition by heating in the temperature range of 200–220 °C until the total mass is decreased by >35%. After this, the temperature could be safely increased to >300 °C for the complete oxidative decomposition of PB that formed iron oxide and salt of the adsorbed Cs. A pilot scale test conducted using the radioactive Cs adsorbed Prussian blue microbeads (PB-b) confirmed that no Cs was released in the effluent air during the process.


2021 ◽  
Author(s):  
Jung-Hun Lee ◽  
Siying Li ◽  
Ji-Beom Yoo ◽  
Young Jun Kim

Abstract In this paper, the polyacrylonitrile (PAN) nanofibers and PAN nanofibers bonded with different transition metal (Fe, Co, Ni, and Cu) acetates were successfully prepared and their thermal oxidative stabilization process were analysed by Fourier-transform infrared spectra (FT-IR) and differential scanning calorimetry (DSC). The structural evolution of process was characterized by examining the FTIR spectral peaks generated at four different thermal oxidative stabilization temperatures. Based on the thermal oxidative stabilization rates obtained from each transition metal, Co-PAN and Cu-PAN are the only effective precursors for the thermal oxidative stabilization process and, according to differential scanning calorimetry, Co-PAN is the most effective and suitable precursor for the PAN with different transition metals. Although Co-PAN increased the exothermic reaction (ΔH) by approximately 140%, it alleviates the heat release rate (ΔH/ΔT) by approximately 44%.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 211
Author(s):  
Emilia Drozłowska ◽  
Artur Bartkowiak ◽  
Paulina Trocer ◽  
Mateusz Kostek ◽  
Alicja Tarnowiecka-Kuca ◽  
...  

The objective of the study was to investigate the application of flaxseed oil cake extract (FOCE) for oxidative stabilization of flaxseed oil in spray-dried emulsions. Two variants of powders with 10% and 20% of flaxseed oil (FO), FOCE, and wall material (maltodextrin and starch Capsul®) were produced by spray-drying process at 180 °C. The oxidative stability of FO was monitored during four weeks of storage at 4 °C by peroxide value (PV) and thiobarbituric acid-reactive substances (TBARS) measurements. Additionally, the fatty acids content (especially changes in α-linolenic acid content), radical scavenging activity, total polyphenolics content, color changes and free amino acids content were evaluated. Obtained results indicated that FOCE could be an adequate antioxidant dedicated for spray-dried emulsions, especially with a high content of FO (20%). These results have important implications for the flaxseed oil encapsulation with natural antioxidant agents obtained from plant-based agro-industrial by product, meeting the goals of circular economy and the idea of zero waste.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Agnieszka M. Hrebień-Filisińska ◽  
Artur Bartkowiak

The aim of the study was to investigate the antioxidant properties of sage oil macerates (M) in cod liver oil (CLO) during process oxidation catalyzed by UV radiation. CLO was not only subject to oxidative stabilization but also used as a solvent for active ingredients of sage. Macerates were obtained by combining the sage with CLO, homogenization, maceration, and filtration. The effect of different maceration times (0, 3, 6, 8, 10, 13, and 15 days) and different concentrations of macerate addition (5%, 10%, 25%, and 50%) on the CLO oxidation degree, which was determined by peroxide value (PV), anisidine value (AV), and Totox index, was evaluated. Additionally, the total content of polyphenols in macerates by the Folin-Ciocalteu method, antioxidant activity DPPH, and color was determined. The macerates showed antioxidant properties in CLO. The best effect was shown by the initial macerate (maceration time 0, M0), which in 25% concentration significantly inhibited oxidative processes in CLO. It was also characterized by high content of polyphenols and antioxidant activity of DPPH. Sage macerates can effectively inhibit oxidation of fish oils and prolong their durability.


Sign in / Sign up

Export Citation Format

Share Document