scholarly journals Treatment of Pesticide-Contaminated Water Using a Selected Fungal Consortium: Study in a Batch and Packed-Bed Bioreactor

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 743
Author(s):  
Marcela Levio-Raiman ◽  
Gabriela Briceño ◽  
Bárbara Leiva ◽  
Sebastián López ◽  
Heidi Schalchli ◽  
...  

This study provides the basis for implementing a continuous treatment system for wastewater containing a pesticide mixture formed by atrazine, iprodione, and chlorpyrifos. Two fungal strains (Verticilium sp. H5 and Metacordyceps sp. H12) isolated from a biomixture of a biopurification system were able to remove different pesticide concentrations (10 to 50 mg L−1) efficiently from the liquid medium; however, the half-life of the pesticides was reduced and characterized by a T1/2 of 5.4 to 9.2 d for atrazine, 3.7 to 5.8 d for iprodione, and 2.6 to 2.9 d for chlorpyrifos using the fungal consortium. The immobilization of the fungal consortium in alginate bead was effective, with the highest pesticide removal observed using an inoculum concentration of 30% wv−1. The packed-bed reactor with the immobilized fungal consortium, which was operated in the continuous mode at different flow rates (30, 60, and 90 mL h−1), required approximately 10 d to achieve removal efficiency (atrazine: 59%; iprodione: 96%; chlorpyrifos: ~85%). The bioreactor was sensitive to flow rate fluctuations but was able to recover performance quickly. The pesticide metabolites hydroxyatrazine, 3,5-dichloroaniline, and 3,5,6-trichloro-2-pyridinol were produced, and a slight accumulation of 3,5,6-trichloro-2-pyridinol was observed. Nevertheless, reactor removal efficiency was maintained until the study ended (60 d).

2021 ◽  
Author(s):  
Swati Sambita Mohanty ◽  
Arvind Kumar

Abstract The current study describes the aerobic biodegradation of Indanthrene Blue RS dye by a microbial consortium immobilized on corn-cob biochar in a continuous up-flow packed bed bioreactor. The adsorption experiments were performed without microbes to monitor the adsorption effects on initial dye decolorization efficiency. The batch experiments were carried out to estimate the process parameters, and the optimal values of pH, temperature, and inoculum volume were identified to be 10.0, 30 ºC, and 3.0 × 106 CFU mL-1, respectively. During the continuous operation, the effect of flow rate, initial substrate concentration, inlet loading rate of Indanthrene Blue RS on the elimination capacity, and its removal efficiency in the bioreactor was studied. The continuous up-flow packed bed bioreactor was performed at different flow rates (0.25 to 1.25 L h-1) under the optimal parameters. The maximum removal efficiency of 90% was observed, with the loading rate varying between 100 to 300 mg L-1 d-1. The up-flow packed bed bioreactor used for this study was extremely useful in eliminating Indanthrene Blue RS dye using both the biosorption and biodegradation process. Therefore, it is a potential treatment strategy for detoxifying textile wastewater containing anthraquinone based dyes.


2011 ◽  
Vol 17 (4) ◽  
pp. 517-524 ◽  
Author(s):  
Zeinab Bakhshi ◽  
Ghasem Najafpour ◽  
Neya Navayi ◽  
Esmaeel Kariminezhad ◽  
Roya Pishgar ◽  
...  

Biodegradation of synthetic wastewater containing phenol by upflow anaerobic packed bed reactor (UAPB) was studied in this work. The reactor was operated at a hydraulic retention time (HRT) of 24 h and under mesophilic (30?1?C) conditions. The startup operation was conducted for 150 days; split into 4 phases. The phenol concentration was stepwise increased. The concentration of phenol in phases 1, 2, 3 and 4 were 100, 400, 700 and 1000 mg/l, respectively. In phase 1, the reactor reached steady state conditions on the 8th day with a phenol removal efficiency and biogas production rate of 96.8% and 1.42 l/d, respectively. For an increase of the initial phenol concentration in phase 2, a slight decrease in phenol removal efficiency was observed. Similar trends were observed in phases 3 and 4 of startup. Due to the high phenol concentration a sudden decrease in removal efficiency and biogas production was observed. The surviving microorganisms were gradually adapted and acclimated to high phenol concentrations. In phases 3 and 4, the phenol removal efficiency at steady state conditions were 98.4 and 98%, respectively. The maximum biogas production was observed at day 130 with a value of 3.57 l/d that corresponds to phenol concentration of 1000 mg/l.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 714 ◽  
Author(s):  
Shang-Ming Huang ◽  
Hsin-Yi Huang ◽  
Yu-Min Chen ◽  
Chia-Hung Kuo ◽  
Chwen-Jen Shieh

2-Phenylethyl acetate (2-PEAc), a highly valued natural volatile ester, with a rose-like odor, is widely added in cosmetics, soaps, foods, and drinks to strengthen scent or flavour. Nowadays, 2-PEAc are commonly produced by chemical synthesis or extraction. Alternatively, biocatalysis is a potential method to replace chemical synthesis or extraction for the production of natural flavour. Continuous synthesis of 2-PEAc in a solvent-free system using a packed bed bioreactor through immobilized lipase-catalyzed transesterification of ethyl acetate (EA) with 2-phenethyl alcohol was studied. A Box–Behnken experimental design with three-level-three-factor, including 2-phenethyl alcohol (2-PE) concentration (100–500 mM), flow rate (1–5 mL min−1) and reaction temperature (45–65 °C), was selected to investigate their influence on the molar conversion of 2-PEAc. Then, response surface methodology and ridge max analysis were used to discuss in detail the optimal reaction conditions for the synthesis of 2-PEAc. The results indicated both 2-PE concentration and flow rate are significant factors in the molar conversion of 2-PEAc. Based on the ridge max analysis, the maximum molar conversion was 99.01 ± 0.09% under optimal conditions at a 2-PE concentration of 62.07 mM, a flow rate of 2.75 mL min−1, and a temperature of 54.03 °C, respectively. The continuous packed bed bioreactor showed good stability for 2-PEAc production, enabling operation for at least 72 h without a significant decrease of conversion.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Swati Sambita Mohanty ◽  
Arvind Kumar

AbstractThe current study describes the aerobic biodegradation of Indanthrene Blue RS dye by a microbial consortium immobilized on corn-cob biochar in a continuous up-flow packed bed bioreactor. The adsorption experiments were performed without microbes to monitor the adsorption effects on initial dye decolorization efficiency. The batch experiments were carried out to estimate the process parameters, and the optimal values of pH, temperature, and inoculum volume were identified as 10.0, 30 °C, and 3.0 × 106 CFU mL−1, respectively. During the continuous operation, the effect of flow rate, initial substrate concentration, inlet loading rate of Indanthrene Blue RS on the elimination capacity, and its removal efficiency in the bioreactor was studied. The continuous up-flow packed bed bioreactor was performed at different flow rates (0.25 to 1.25 L h−1) under the optimal parameters. The maximum removal efficiency of 90% was observed, with the loading rate varying between 100 and 300 mg L−1 day−1. The up-flow packed bed bioreactor used for this study was extremely useful in eliminating Indanthrene Blue RS dye using both the biosorption and biodegradation process. Therefore, it is a potential treatment strategy for detoxifying textile wastewater containing anthraquinone-based dyes.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elahe Azizi ◽  
Fariba Abbasi ◽  
Mohammad Ali Baghapour ◽  
Mohammad Reza Shirdareh ◽  
Mohammad Reza Shooshtarian

Abstract4-chlorophenol (4-CP) is a hazardous contaminant that is hardly removed by some technologies. This study investigated the biodegradation, and physical 4-CP removal by a mixed microbial consortium in the Airlift packed bed bioreactor (ALPBB) and modeling by an artificial neural network (ANN) for first the time. The removal efficiency of ALPBB was investigated at 4-CP(1-1000 mg/L) and hydraulic retention time (HRT)(6-96 hr) by HPLC. The results showed that removal efficiency decreased from 85 at 1 to 0.03% at 1000 mg/L, with increasing 4-CP concentration and HRT decreasing. BOD5/COD increased with increasing exposure time and concentration decreasing, from 0.05 at 1000 to 0.96 at 1 mg/L. With time increasing, the correlation between COD and 4-CP removal increased (R2 = 0.5, HRT = 96 h). There was a positive correlation between the removal of 4-CP and SCOD by curve fitting was R2 = 0.93 and 0.96, respectively. Moreover, the kinetics of 4-CP removal follows the first-order and pseudo-first-order equation at 1 mg/L and other concentrations, respectively. 4-CP removal modeling has shown that the 2:3:1 and 2:4:1 were the best structures (MSE: physical = 0.126 and biological = 0.9)(R2allphysical = 0.999 and R2testphysical = 0.999) and (R2allbiological = 0.71, and R2testbiological = 0.997) for 4-CP removal. Also, the output obtained by the ANN prediction of 4-CP was correlated to the actual data (R2physical = 0.9997 and R2biological = 0.59). Based on the results, ALPBB with up-flow submerged aeration is a suitable option for the lower concentration of 4-CP, but it had less efficiency at high concentrations. So, physical removal of 4-CP was predominant in biological treatment. Therefore, the modification of this reactor for 4-CP removal is suggested at high concentrations.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Han Zhitao ◽  
Gao Yu ◽  
Yang Shaolong ◽  
Dong Jingming ◽  
Pan Xinxiang ◽  
...  

Experiments were conducted to remove NO from simulated flue gas in a rotating packed bed (RPB) reactor with NaClO2 as wet scrubbing oxidant and diesel exhaust gas as carrier gas. The effects of various operating parameters (rotational speed, solution pH, NaClO2 concentration, liquid-gas ratio, and NO and SO2 concentrations) on NO removal performance were investigated preliminarily. The results showed that with the increase of rotational speed, oxidant concentration, and liquid-gas ratio, NO removal efficiency increased obviously. NO removal efficiency increased largely with the decrease of solution pH, and a complete removal of NO could be attained at pH 4. NO concentration imposed little effect on NO removal efficiency while coexisting SO2 in exhaust gas could enhance NOx removal greatly.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Bhaswati Chakraborty ◽  
Suvendu Indra ◽  
Ditipriya Hazra ◽  
Rupal Betai ◽  
Lalitagauri Ray ◽  
...  

Organic pollutants, like phenol, along with heavy metals, like chromium, are present in various industrial effluents that pose serious health hazard to humans. The present study looked at removal of chromium (VI) in presence of phenol in a counter-current continuous packed bed reactor packed withE. colicells immobilized on clay chips. The cells removed 85% of 500 mg/L of chromium (VI) from MS media containing glucose. Glucose was then replaced by 500 mg/L phenol. Temperature and pH of the MS media prior to addition of phenol were 30°C and 7, respectively. Hydraulic retention times of phenol- and chromium (VI)-containing synthetic media and air flow rates were varied to study the removal efficiency of the reactor system. Then temperature conditions of the reactor system were varied from 10°C to 50°C, the optimum being 30°C. The pH of the media was varied from pH 1 to pH 12, and the optimum pH was found to be 7. The maximum removal efficiency of 77.7% was achieved for synthetic media containing phenol and chromium (VI) in the continuous reactor system at optimized conditions, namely, hydraulic retention time at 4.44 hr, air flow rate at 2.5 lpm, temperature at 30°C, and pH at 7.


2019 ◽  
Vol 50 (3) ◽  
Author(s):  
S. I. Hussein

In the current study, three types of common plants, namely Tomato (Solanum lycopersicum), Cucumber (Cucumis sativus) and Orange (Citrus sinensis) were obtained and screened for their polyphenol oxidase (PPO) activity, Among the three plants, Solanum lycopersicum was chosen with maximum enzymatic activity, it had the highest productivity of the enzyme (23733 U/mg protein).The PPO from Solanum lycopersicum was purified using two steps: concentration by sucrose and gel filtration by using Sephacryl S-200. The results showed an increase in the final purification folds by 2.4 times with an enzyme yield of 32.6%. The immobilization studies showed that PPO was more stable when immobilized on chitosan by covalent linkage with immobilization ratio of 62%, in comparison with agar-agar by entrapment method (36%). The removal efficiency of crude and partial purified PPO was studied with textile dyes, including yellow, red, black and blue dyes at optimum conditions: pH 5, temperature 40oC after 3 hrs. Maximum removal efficiency of dyes observed with crude PPO were 53.9, 81.4, 86.5 and 79.6% respectively. However, purified PPO displayed removal efficiency reached 60.3, 84.3, 84.6 and 77.5% respectively. The potential of immobilized PPO on chitosan was evaluated by decolorization of black textile dye in packed bed bioreactor in batch operation. The results indicated that immobilized PPO in batch operation has the ability to remove 99% of the dye after 2 hrs, and the results showed a positive relationship between the degradation rate and incubation time in batch operation.


2007 ◽  
Vol 55 (12) ◽  
pp. 75-81 ◽  
Author(s):  
F. Martínez ◽  
M.I. Pariente ◽  
J.A. Melero ◽  
J.A. Botas ◽  
E. Gómez

Iron-containing mesostructured materials (Fe-SBA-15) are suitable for continuous treatment of phenolic aqueous solutions by means of catalytic wet peroxide oxidation (CWPO) in a packed-bed reactor. These materials were successfully extruded, crushed and sieved with a particle size ranging from 1 to 1.6 mm using mineral clay and methyl cellulose as binders. Non-significant changes have been found in the textural and structural properties of the extruded material in comparison to the parent powder Fe-SBA-15 material. Activity of extruded catalyst in terms of phenol degradation and TOC reduction has been monitored in a continuous mode. The increase of residence time enhances significantly the TOC degradation. The catalyst stability, taking into account the loss of iron species from the catalyst into the aqueous solution, has also been examined. The catalytic results of Fe-SBA-15 material in comparison to a homogeneous catalytic test prove the relevant role of the solid catalyst in the oxidation process.


2017 ◽  
Vol 76 (8) ◽  
pp. 2167-2176 ◽  
Author(s):  
P. S. Ambily ◽  
Sharrel Rebello ◽  
K. Jayachandran ◽  
M. S. Jisha

Anionic surfactants like sodium dodecyl sulphate (SDS), due to its extensive disposal to water bodies cause detrimental effects to the ecosystem. Among the various attempts to reduce the after effects of these toxicants, microbial induced bioremediation serves as a promising strategy. The current study aimed to develop a three stage bioreactor to remediate anionic surfactants in wastewater using effective bacterial isolates. Screening of effective SDS biodegraders led to isolation of Pseudomonas aeruginosa (MTCC 10311). Treatment of synthetic effluent with an immobilized packed bed reactor at a flow rate of 5 mL h−1 resulted in 81 ± 2% SDS eliminations and 70 ± 1% reduction in chemical oxygen demand (COD) in five cycles (6 h per cycle). The hydraulic retention time of the reactor was found to be 6 h. Combinatorial usage of a three stage bioreactor, involving aeration, adsorption with low cost scrap rubber granules and treatment with immobilized Pseudomonas aeruginosa, successfully reduced SDS concentrations and COD of wastewater to 99.8 ± 0.1% and 99 ± 1%, respectively, in 18 h by continuous treatment. Half-life of the three stage bioreactor was 72 h. In addition to reducing the surfactant concentrations, this novel bioreactor could resolve the surfactant associated foaming problems in treatment plants, which make it more unique.


Sign in / Sign up

Export Citation Format

Share Document