brush border enzymes
Recently Published Documents


TOTAL DOCUMENTS

124
(FIVE YEARS 4)

H-INDEX

25
(FIVE YEARS 1)

2021 ◽  
Vol 8 ◽  
Author(s):  
Lovemore Nkhata Malunga ◽  
Nancy Ames ◽  
Haonan Zhouyao ◽  
Heather Blewett ◽  
Sijo Joseph Thandapilly

Beta (β)-glucan (BG) from cereal grains is associated with lowering post-prandial blood glucose but the precise mechanism is not well-elucidated. The main aim of this study was to understand the mechanism through which BG from barley affects post-prandial glycemic response. Waffles containing 0, 1, 2, and 3 g barley BG and the same amount of available carbohydrate (15 g) were fed to the TIM-1 dynamic gastrointestinal digestion system to study the effect of BG on starch hydrolysis. Intestinal acetone powder and Xenopus laevis oocytes were used to study BG's effect on mammalian intestinal α-glucosidase and glucose transporters. The presence of BG did not significantly affect the in vitro starch digestion profiles of waffles suggesting that BG does not affect α-amylase activity. Intestinal α-glucosidase and glucose transport activities were significantly (p < 0.0001) inhibited in the presence of barley BG. Interestingly, BG viscosity did not influence α-amylase, α-glucosidase, GLUT2, and SGLT1 activities. This study provides the first evidence for the mechanism by which BG from barley attenuates post-prandial glycemic response is via alteration of α-glucosidase, GLUT2, and SGLT1 activity, but not amylolysis of starch. The decrease in post-prandial blood glucose in the presence of BG is likely a consequence of the interaction between BG and membrane active proteins (brush border enzymes and glucose transporters) as opposed to the commonly held hypothesis that increased viscosity caused by BG inhibits starch digestion.


Foods ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1415
Author(s):  
Luísa Ozorio ◽  
Caroline Mellinger-Silva ◽  
Lourdes M. C. Cabral ◽  
Julien Jardin ◽  
Gaelle Boudry ◽  
...  

For many years, it was believed that only amino acids, dipeptides, and tripeptides could be absorbed and thus reach the bloodstream. Nowadays, the bioavailability of oligopeptides is also considered possible, leading to new research. This pilot study investigates the activity of brush border enzymes on undigested whey protein hydrolysate (WPH) and on simulated intestinal digested (ID) whey hydrolysate and the subsequent absorption of resultant peptides through the proximal jejunum of a 7-week old piglet setup in an Ussing chamber model. Amongst all samples taken, 884 oligopeptides were identified. The brush border peptidase activity was intense in the first 10 min of the experiment, producing several new peptides in the apical compartment. With respect to the ID substrate, 286 peptides were detected in the basolateral compartment after 120 min of enzyme activity, originating from β-lactoglobulin (60%) and β-casein (20%). Nevertheless, only 0.6 to 3.35% of any specific peptide could pass through the epithelial barrier and thus reach the basolateral compartment. This study demonstrates transepithelial jejunum absorption of whey oligopeptides in an ex vivo model. It also confirmed the proteolytic activity of brush border enzymes on these oligopeptides, giving birth to a myriad of new bioactive peptides available for absorption.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3854 ◽  
Author(s):  
Shreya Bendre ◽  
Zhengxing Zhang ◽  
Hsiou-Ting Kuo ◽  
Julie Rousseau ◽  
Chengcheng Zhang ◽  
...  

High kidney uptake is a common feature of peptide-based radiopharmaceuticals, leading to reduced detection sensitivity for lesions adjacent to kidneys and lower maximum tolerated therapeutic dose. In this study, we evaluated if the Met-Val-Lys (MVK) linker could be used to lower kidney uptake of 68Ga-labeled DOTA-conjugated peptides and peptidomimetics. A model compound, [68Ga]Ga-DOTA-AmBz-MVK(Ac)-OH (AmBz: aminomethylbenzoyl), and its derivative, [68Ga]Ga-DOTA-AmBz-MVK(HTK01166)-OH, coupled with the PSMA (prostate-specific membrane antigen)-targeting motif of the previously reported HTK01166 were synthesized and evaluated to determine if they could be recognized and cleaved by the renal brush border enzymes. Additionally, positron emission tomography (PET) imaging, ex vivo biodistribution and in vivo stability studies were conducted in mice to evaluate their pharmacokinetics. [68Ga]Ga-DOTA-AmBz-MVK(Ac)-OH was effectively cleaved specifically by neutral endopeptidase (NEP) of renal brush border enzymes at the Met-Val amide bond, and the radio-metabolite [68Ga]Ga-DOTA-AmBz-Met-OH was rapidly excreted via the renal pathway with minimal kidney retention. [68Ga]Ga-DOTA-AmBz-MVK(HTK01166)-OH retained its PSMA-targeting capability and was also cleaved by NEP, although less effectively when compared to [68Ga]Ga-DOTA-AmBz-MVK(Ac)-OH. The kidney uptake of [68Ga]Ga-DOTA-AmBz-MVK(HTK01166)-OH was 30% less compared to that of [68Ga]Ga-HTK01166. Our data demonstrated that derivatives of [68Ga]Ga-DOTA-AmBz-MVK-OH can be cleaved specifically by NEP, and therefore, MVK can be a promising cleavable linker for use to reduce kidney uptake of radiolabeled DOTA-conjugated peptides and peptidomimetics.


2019 ◽  
Vol 13 (1) ◽  
Author(s):  
Jennifer E. Speer ◽  
Yuli Wang ◽  
John K. Fallon ◽  
Philip C. Smith ◽  
Nancy L. Allbritton

Abstract Background The intestinal epithelium is a major site of drug metabolism in the human body, possessing enterocytes that house brush border enzymes and phase I and II drug metabolizing enzymes (DMEs). The enterocytes are supported by a porous extracellular matrix (ECM) that enables proper cell adhesion and function of brush border enzymes, such as alkaline phosphatase (ALP) and alanyl aminopeptidase (AAP), phase I DMEs that convert a parent drug to a more polar metabolite by introducing or unmasking a functional group, and phase II DMEs that form a covalent conjugate between a functional group on the parent compound or sequential metabolism of phase I metabolite. In our effort to develop an in vitro intestinal epithelium model, we investigate the impact of two previously described simple and customizable scaffolding systems, a gradient cross-linked scaffold and a conventional scaffold, on the ability of intestinal epithelial cells to produce drug metabolizing proteins as well as to metabolize exogenously added compounds. While the scaffolding systems possess a range of differences, they are most distinguished by their stiffness with the gradient cross-linked scaffold possessing a stiffness similar to that found in the in vivo intestine, while the conventional scaffold possesses a stiffness several orders of magnitude greater than that found in vivo. Results The monolayers on the gradient cross-linked scaffold expressed CYP3A4, UGTs 2B17, 1A1 and 1A10, and CES2 proteins at a level similar to that in fresh crypts/villi. The monolayers on the conventional scaffold expressed similar levels of CYP3A4 and UGTs 1A1 and 1A10 DMEs to that found in fresh crypts/villi but significantly decreased expression of UGT2B17 and CES2 proteins. The activity of CYP3A4 and UGTs 1A1 and 1A10 was inducible in cells on the gradient cross-linked scaffold when the cells were treated with known inducers, whereas the CYP3A4 and UGT activities were not inducible in cells grown on the conventional scaffold. Both monolayers demonstrate esterase activity but the activity measured in cells on the conventional scaffold could not be inhibited with a known CES2 inhibitor. Both monolayer culture systems displayed similar ALP and AAP brush border enzyme activity. When cells on the conventional scaffold were incubated with a yes-associated protein (YAP) inhibitor, CYP3A4 activity was greatly enhanced suggesting that mechano-transduction signaling can modulate drug metabolizing enzymes. Conclusions The use of a cross-linked hydrogel scaffold for expansion and differentiation of primary human intestinal stem cells dramatically impacts the induction of CYP3A4 and maintenance of UGT and CES drug metabolizing enzymes in vitro making this a superior substrate for enterocyte culture in DME studies. This work highlights the influence of mechanical properties of the culture substrate on protein expression and the activity of drug metabolizing enzymes as a critical factor in developing accurate assay protocols for pharmacokinetic studies using primary intestinal cells. Graphical abstract


2017 ◽  
Vol 95 (suppl_4) ◽  
pp. 314-315
Author(s):  
P. Górka ◽  
B. Śliwiński ◽  
R. Miltko ◽  
J. Flaga ◽  
J. Barć ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Tanja Šuligoj ◽  
Paul J. Ciclitira ◽  
Borut Božič

Disaccharidases (DS) are brush border enzymes embedded in the microvillous membrane of small intestinal enterocytes. In untreated coeliac disease (CD), a general decrease of DS activities is seen. This manuscript reviews different aspects of DS activities in CD: their utility in the diagnosis and their application to in vitro toxicity testing. The latter has never been established in CD research. However, with the recent advances in small intestinal organoid techniques, DS might be employed as a biomarker for in vitro studies. This includes establishment of self-renewing epithelial cells raised from tissue, which express differentiation markers, including the brush border enzymes. Determining duodenal DS activities may provide additional information during the diagnostic workup of CD: (i) quantify the severity of the observed histological lesions, (ii) provide predictive values for the grade of mucosal villous atrophy, and (iii) aid diagnosing CD where minor histological changes are seen. DS can also provide additional information to assess the response to a gluten-free diet as marked increase of their activities occurs four weeks after commencing it. Various endogenous and exogenous factors affecting DS might also be relevant when considering investigating the role of DS in other conditions including noncoeliac gluten sensitivity and DS deficiencies.


2016 ◽  
Vol 311 (2) ◽  
pp. G324-G333 ◽  
Author(s):  
Rene L. Shen ◽  
Peter E. L. Pontoppidan ◽  
Mathias Rathe ◽  
Pingping Jiang ◽  
Carl Frederik Hansen ◽  
...  

Chemotherapy-induced gastrointestinal (GI) toxicity is a common adverse effect of cancer treatment. We used preweaned piglets as models to test our hypothesis that the immunomodulatory and GI trophic effects of bovine colostrum would reduce the severity of GI complications associated with doxorubicin (DOX) treatment. Five-day-old pigs were administered DOX (1 × 100 mg/m2) or an equivalent volume of saline (SAL) and either fed formula (DOX-Form, n = 9, or SAL-Form, n = 7) or bovine colostrum (DOX-Colos, n = 9, or SAL-Colos, n = 7). Pigs were euthanized 5 days after initiation of chemotherapy to assess markers of small intestinal function and inflammation. All DOX-treated animals developed diarrhea, growth deficits, and leukopenia. However, the intestines of DOX-Colos pigs had lower intestinal permeability, longer intestinal villi with higher activities of brush border enzymes, and lower tissue IL-8 levels compared with DOX-Form (all P < 0.05). DOX-Form pigs, but not DOX-Colos pigs, had significantly higher plasma C-reactive protein, compared with SAL-Form. Plasma citrulline was not affected by DOX treatment or diet. Thus a single dose of DOX induces intestinal toxicity in preweaned pigs and may lead to a systemic inflammatory response. The toxicity is affected by type of enteral nutrition with more pronounced GI toxicity when formula is fed compared with bovine colostrum. The results indicate that bovine colostrum may be a beneficial supplementary diet for children subjected to chemotherapy and subsequent intestinal toxicity.


2015 ◽  
Vol 86 (7) ◽  
pp. 494-498
Author(s):  
Andrzej Torbé ◽  
Ewelina Chłapowska ◽  
Jolanta Szymańska-Pasternak ◽  
Joanna Bober ◽  
Ewa Kwiatkowska ◽  
...  

Author(s):  
Diane Hooton ◽  
Roger Lentle ◽  
John Monro ◽  
Martin Wickham ◽  
Robert Simpson

2012 ◽  
Vol 47 (No. 10 - 11) ◽  
pp. 289-294
Author(s):  
I. Trebichavský ◽  
H. Kozáková ◽  
IŠplíchal

Gnotobiotic piglets were orally infected either with the virulent LT2 strain or the non-pathogenic SF1591 rough mutant of Salmonella enterica serotype Typhimurium. They were sacrificed 6 or 24 h after the infection. All piglets infected for 24 h developed systemic infection with an increase of plasma lipopolysaccharide. Infection with the virulent strain caused a significant decrease (P &lt; 0.001) of gamma-glutamyl transpeptidase (GGT) activity in the enterocyte brush border of both the jejunum and ileum, infection with the rough mutant caused a decrease of GGT activity in the ileum only. The activities of other brush border enzymes (lactase, sucrase, glucoamylase, alkaline phosphatase and dipeptidylpeptidase IV) did not change significantly after infection.


Sign in / Sign up

Export Citation Format

Share Document