scholarly journals Size-driven preservational and macroecological biases in the latest Maastrichtian terrestrial vertebrate assemblages of North America

Paleobiology ◽  
2021 ◽  
pp. 1-29
Author(s):  
Caleb M. Brown ◽  
Nicolás E. Campione ◽  
Gregory P. Wilson Mantilla ◽  
David C. Evans

Abstract The end-Cretaceous (K/Pg) mass extinction event is the most recent and well-understood of the “big five” and triggered establishment of modern terrestrial ecosystem structure. Despite the depth of research into this event, our knowledge of upper Maastrichtian terrestrial deposits globally relies primarily on assemblage-level data limited to a few well-sampled formations in North America, the Hell Creek and Lance Formations. These assemblages disproportionally affect our interpretations of this important interval. Multiple investigations have quantified diversity patterns within these assemblages, but the potential effect of formation-level size-dependent taphonomic biases and their implications on extinction dynamics remains unexplored. Here, the relationship between taphonomy and body size of the Hell Creek Formation and Lance Formation dinosaurs and mammals are quantitatively analyzed. Small-bodied dinosaur taxa (<70 kg) are consistently less complete, unlikely to be articulated, and delayed in their description relative to their large-bodied counterparts. Family-level abundance (particularly skeletons) is strongly tied to body mass, and the relative abundance of juveniles of large-bodied taxa similarly is underrepresented. Mammals show similar but nonsignificant trends. The results are remarkably similar to those from the Campanian-aged Dinosaur Park Formation, suggesting a widespread strong taphonomic bias against the preservation of small taxa, which will result in their seemingly depauperate diversity within the assemblage. This taphonomically skewed view of diversity and abundance of small-bodied taxa amid our best late Maastrichtian samples has significant implications for understanding speciation and extinction dynamics (e.g., size-dependent extinction selectivity) across the K/Pg boundary.

2021 ◽  
pp. 1-15
Author(s):  
Thomas M. Cullen ◽  
Lindsay Zanno ◽  
Derek W. Larson ◽  
Erinn Todd ◽  
Philip J. Currie ◽  
...  

The Dinosaur Park Formation (DPF) of Alberta, Canada, has produced one of the most diverse dinosaur faunas, with the record favouring large-bodied taxa, in terms of number and completeness of skeletons. Although small theropods are well documented in the assemblage, taxonomic assessments are frequently based on isolated, fragmentary skeletal elements. Here we reassess DPF theropod biodiversity using morphological comparisons, high-resolution biostratigraphy, and morphometric analyses, with a focus on specimens/taxa originally described from isolated material. In addition to clarifying taxic diversity, we test whether DPF theropods preserve faunal zonation/turnover patterns similar to those previously documented for megaherbivores. Frontal bones referred to a therizinosaur (cf. Erlikosaurus), representing among the only skeletal record of the group from the Campanian–Maastrichtian (83–66 Ma) fossil record of North America, plot most closely to troodontids in morphospace, distinct from non-DPF therizinosaurs, a placement supported by a suite of troodontid anatomical frontal characters. Postcranial material referred to cf. Erlikosaurus in North America is also reviewed and found most similar in morphology to caenagnathids, rather than therizinosaurs. Among troodontids, we document considerable morphospace and biostratigraphic overlap between Stenonychosaurus and the recently described Latenivenatrix, as well as a variable distribution of putatively autapomorphic characters, calling the validity of the latter taxon into question. Biostratigraphically, there are no broad-scale patterns of faunal zonation similar to those previously documented in ornithischians from the DPF, with many theropods ranging throughout much of the formation and overlapping extensively, possibly reflecting a lack of sensitivity to environmental changes, or other cryptic ecological or evolutionary factors.


1995 ◽  
Vol 69 (6) ◽  
pp. 1191-1194 ◽  
Author(s):  
Clive E. Coy

Spiral coprolites from the Upper Cretaceous of North America are poorly known. Enterospirae (fossilized intestines) reported from the Upper Cretaceous Niobrara Formation of western Kansas (Stewart, 1978) were disputed by McAllister (1985), who felt they represented spiral coprolites similar to those described from the Permian by Neumayer (1904). Previously described coprolites from the Upper Cretaceous of Alberta are small, unstructured, ellipsoidal forms thought to derive from a crocodilian or terrestrial, carnivorous reptile of necrophagic or piscivorous habits (Waldman, 1970; Waldman and Hopkins, 1970).


1992 ◽  
Vol 6 ◽  
pp. 132-132
Author(s):  
Thomas R. Holtz

It has often been assumed that the intensively studied dinosaur faunal assemblages of western North America and the Gobi Desert of Mongolia and China represent “typical” Late Cretaceous terrestrial vertebrate communities. This assumption has led to a paleoecological scenario in which a global ecological shift occurs from the dominance of high-browsing saurischian (i.e., sauropod) to low-browsing ornithischian (i.e., iguanodontian, marginocephalian, ankylosaurian) herbivore communities. Furthermore, the assumption that the Asiamerican dinosaur faunas are communities “typical” of the Late Cretaceous has forced the conclusion that the sauropod-dominated Argentine population must have been an isolated relict ecosystem of primitive taxa (i.e., titanosaurid sauropods, abelisaurid ceratosaurs). Recent discoveries and reinterpretations of other Late Cretaceous assemblages, however, seriously challenge these assumptions.Paleogeography and paleobiogeography have demonstrated that terrestrial landmasses became progressively fractionated from the Late Jurassic (Kimmeridgian-Tithonian) to the Late Cretaceous (Campanian), owing to continental drift and the development of large epicontinental seas (the Western Interior Seaway, the Turgai Sea, etc.). The Maastrichtian regressions resulted in the reestablishment of land connection between long isolated regions (for example, western and eastern North America). These geographic changes are reflected in changes in the dinosaurian faunas. These assemblages were rather cosmopolitan in the Late Jurassic (Morrison, Tendaguru, and Upper Shaximiao Formations) but became more provincialized throughout the Cretaceous.Cluster analysis of presence/absence data for the theropod, sauropod, and ornithischian clades indicates that previous assumptions for Late Cretaceous dinosaurian paleoecology are largely in error. These analyses instead suggest that sauropod lineages remained a major faunal component in both Laurasia (Europe, Asia) and Gondwana (South America, Africa, India, and Australia). Only the pre-Maastrichtian Senonian deposits of North America were lacking sauropodomorphs. Furthermore, the abelisaurid/titanosaurid fauna of Argentina is, in fact, probably more typical of Late Cretaceous dinosaurian communities. Rather, it is the coelurosaurian/ornithischian communities of Asiamerica (and particularly North America) that are composed primarily of dinosaurs of small geographic distribution. Thus, the Judithian, Edmontonian, and Lancian faunas, rather than being typical of the Late Cretaceous, most likely represent an isolated island-continent terrestrial vertebrate population, perhaps analogous to the extremely isolated vertebrate communities of Tertiary South America. Furthermore, the shift from high-browsing to low-browsing herbivore “dynasties” more likely represents a local event in Senonian North America and does not represent a global paleoecological transformation of Late Cretaceous dinosaur community structure.


Author(s):  
Sydney R. Mohr ◽  
John H. Acorn ◽  
Gregory F. Funston ◽  
Philip J. Currie

The Cretaceous birds of Alberta are poorly known, as skeletal elements are rare and typically consist of fragmentary postcranial remains. A partial avian coracoid from the upper Campanian Dinosaur Park Formation of Alberta, Canada, can be referred to the Ornithurae, and is referred to here as Ornithurine G (cf. Cimolopteryx). Its structure is similar to previously described ornithurine coracoids from Alberta and other localities in North America, particularly those belonging to the genus Cimolopteryx. A comparison of these elements indicates that the new coracoid is distinct; however, its preservation prevents complete diagnosis. As other Cimolopteryx are Maastrichtian in age, Ornithurine G (cf. Cimolopteryx) also represents the earliest occurrence of a Cimolopteryx-like anatomy. A pneumatized coracoid is a diagnostic trait of Neornithes, identified by the presence of a pneumatic foramen. Ornithurine G (cf. Cimolopteryx) does not preserve this feature. CT and micro-CT scans of both pneumatic and apneumatic coracoids of modern birds show similar internal structures to Ornithurine G (cf. Cimolopteryx), indicating that pneumaticity of the coracoid cannot be determined in the absence of an external pneumatic foramen. A comparison between members of Cimolopterygidae, including Cimolopteryx and Lamarqueavis, raises questions about the assignment of Lamarqueavis to the Cimolopterygidae, and the validity of this family as a whole.


2020 ◽  
Vol 57 (4) ◽  
pp. 542-552 ◽  
Author(s):  
Ramon S. Nagesan ◽  
James A. Campbell ◽  
Jason D. Pardo ◽  
Kendra I. Lennie ◽  
Matthew J. Vavrek ◽  
...  

Western North America preserves iconic dinosaur faunas from the Upper Jurassic and Upper Cretaceous, but this record is interrupted by an approximately 20 Myr gap with essentially no terrestrial vertebrate fossil localities. This poorly sampled interval is nonetheless important because it is thought to include a possible mass extinction, the origin of orogenic controls on dinosaur spatial distribution, and the origin of important Upper Cretaceous dinosaur taxa. Therefore, dinosaur-bearing rocks from this interval are of particular interest to vertebrate palaeontologists. In this study, we report on one such locality from Highwood Pass, Alberta. This locality has yielded a multitaxic assemblage, with the most diagnostic material identified so far including ankylosaurian osteoderms and a turtle plastron element. The fossil horizon lies within the upper part of the Pocaterra Creek Member of the Cadomin Formation (Blairmore Group). The fossils are assigned as Berriasian (earliest Cretaceous) in age, based on previous palynomorph analyses of the Pocaterra Creek Member and underlying and overlying strata. The fossils lie within numerous cross-bedded sandstone beds separated by pebble lenses. These sediments are indicative of a relatively high-energy depositional environment, and the distribution of these fossils over multiple beds indicates that they accumulated over multiple events, possibly flash floods. The fossils exhibit a range of surface weathering, having intact to heavily weathered cortices. The presence of definitive dinosaur material from near the Jurassic–Cretaceous boundary of Alberta establishes the oldest record of dinosaur body fossils in western Canada and provides a unique opportunity to study the Early Cretaceous dinosaur faunas of western North America.


2017 ◽  
Vol 284 (1852) ◽  
pp. 20170231 ◽  
Author(s):  
Neil Brocklehurst ◽  
Michael O. Day ◽  
Bruce S. Rubidge ◽  
Jörg Fröbisch

The terrestrial vertebrate fauna underwent a substantial change in composition between the lower and middle Permian. The lower Permian fauna was characterized by diverse and abundant amphibians and pelycosaurian-grade synapsids. During the middle Permian, a therapsid-dominated fauna, containing a diverse array of parareptiles and a considerably reduced richness of amphibians, replaced this. However, it is debated whether the transition is a genuine event, accompanied by a mass extinction, or whether it is merely an artefact of the shift in sampling from the palaeoequatorial latitudes to the palaeotemperate latitudes. Here we use an up-to-date biostratigraphy and incorporate recent discoveries to thoroughly review the Permian tetrapod fossil record. We suggest that the faunal transition represents a genuine event; the lower Permian temperate faunas are more similar to lower Permian equatorial faunas than middle Permian temperate faunas. The transition was not consistent across latitudes; the turnover occurred more rapidly in Russia, but was delayed in North America. The argument that the mass extinction is an artefact of a latitudinal biodiversity gradient and a shift in sampling localities is rejected: sampling correction demonstrates an inverse latitudinal biodiversity gradient was prevalent during the Permian, with peak diversity in the temperate latitudes.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Kole F. Adelalu ◽  
Xu Zhang ◽  
Xiaojian Qu ◽  
Jacob B. Landis ◽  
Jun Shen ◽  
...  

Investigating the biogeographical disjunction of East Asian and North American flora is key to understanding the formation and dynamics of biodiversity in the Northern Hemisphere. The small Cupressaceae genus Thuja, comprising five species, exhibits a typical disjunct distribution in East Asia and North America. Owing to obscure relationships, the biogeographical history of the genus remains controversial. Here, complete plastomes were employed to investigate the plastome evolution, phylogenetic relationships, and biogeographic history of Thuja. All plastomes of Thuja share the same gene content arranged in the same order. The loss of an IR was evident in all Thuja plastomes, and the B-arrangement as previously recognized was detected. Phylogenomic analyses resolved two sister pairs, T. standishii-T. koraiensis and T. occidentalis-T. sutchuenensis, with T. plicata sister to T. occidentalis-T. sutchuenensis. Molecular dating and biogeographic results suggest the diversification of Thuja occurred in the Middle Miocene, and the ancestral area of extant species was located in northern East Asia. Incorporating the fossil record, we inferred that Thuja likely originated from the high-latitude areas of North America in the Paleocene with a second diversification center in northern East Asia. The current geographical distribution of Thuja was likely shaped by dispersal events attributed to the Bering Land Bridge in the Miocene and subsequent vicariance events accompanying climate cooling. The potential effect of extinction may have profound influence on the biogeographical history of Thuja.


2017 ◽  
Vol 27 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Nathan J Doogan ◽  
Mary Ellen Wewers ◽  
Micah Berman

BackgroundIncreasing cigarette prices reduce cigarette use. The US Food and Drug Administration has the authority to regulate the sale and promotion—and therefore the price—of tobacco products.ObjectiveTo examine the potential effect of federal minimum price regulation on the sales of cigarettes in the USA.MethodWe used yearly state-level data from the Tax Burden on Tobacco and other sources to model per capita cigarette sales as a function of price. We used the fitted model to compare the status quo sales with counterfactual scenarios in which a federal minimum price was set. The minimum price scenarios ranged from $0 to $12.ResultsThe estimated price effect in our model was comparable with that found in the literature. Our counterfactual analyses suggested that the impact of a minimum price requirement could range from a minimal effect at the $4 level to a reduction of 5.7 billion packs sold per year and 10 million smokers at the $10 level.ConclusionA federal minimum price policy has the potential to greatly benefit tobacco control and public health by uniformly increasing the price of cigarettes and by eliminating many price-reducing strategies currently available to both sellers and consumers.


Sign in / Sign up

Export Citation Format

Share Document