scholarly journals Starch extracted from pineapple (Ananas comosus) plant stem as a source for amino acids production

Author(s):  
Pei Hsia Chu ◽  
Mohd Azwan Jenol ◽  
Lai Yee Phang ◽  
Mohamad Faizal Ibrahim ◽  
Sehanat Prasongsuk ◽  
...  

Abstract Background Pineapple plant (Ananas comosus) is one of the largest productions in Asia and its increasing production has generated a huge amount of pineapple wastes. Pineapple plant stem is made up of high concentration of starch which can potentially be converted into value-added products, including amino acids. Due to the increasing demand in animal feed grade amino acids, especially for methionine and lysine, the utilisation of cheap and renewable source is deemed to be an essential approach. This study aimed to produce amino acids from pineapple plant stem hydrolysates through microbial fermentation by Pediococcus acidilactici Kp10. Dextrozyme was used for hydrolysis of starch and Celluclast 1.5 L for saccharification of cellulosic materials in pineapple plant stem. Results The hydrolysates obtained were used in the fermentation to produce methionine and lysine. Pineapple plant stem showed high starch content of 77.78%. Lignocellulosic composition of pineapple plant stem consisted of 46.15% hemicellulose, 31.86% cellulose, and 18.60% lignin. Saccharification of alkaline-treated pineapple plant stem gave lower reducing sugars of 13.28 g/L as compared to untreated, where 18.56 g/L reducing sugars obtained. Therefore, the untreated pineapple plant stem was selected for further process. Starch hydrolysis produced 57.57 g/L reducing sugar (100% hydrolysis yield) and saccharification of cellulosic materials produced 24.67 g/L reducing sugars (56.93% hydrolysis yield). The starch-based and cellulosic-based of pineapple plant stem were subjected as carbon source in methionine and lysine production by P. acidilactici Kp10. Conclusions In conclusion, higher methionine and lysine production were produced from starch-based hydrolysis (40.25 mg/L and 0.97 g/L, respectively) as compared to cellulosic-based saccharification (37.31 mg/L and 0.84 g/L, respectively) of pineapple plant stem. Graphical Abstract

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Shengzhu Yu ◽  
Bo Zheng ◽  
Zhenya Chen ◽  
Yi-Xin Huo

Abstract Background Branched chain amino acids (BCAAs) are widely applied in the food, pharmaceutical, and animal feed industries. Traditional chemical synthetic and enzymatic BCAAs production in vitro has been hampered by expensive raw materials, harsh reaction conditions, and environmental pollution. Microbial metabolic engineering has attracted considerable attention as an alternative method for BCAAs biosynthesis because it is environmentally friendly and delivers high yield. Main text Corynebacterium glutamicum (C. glutamicum) possesses clear genetic background and mature gene manipulation toolbox, and has been utilized as industrial host for producing BCAAs. Acetohydroxy acid synthase (AHAS) is a crucial enzyme in the BCAAs biosynthetic pathway of C. glutamicum, but feedback inhibition is a disadvantage. We therefore reviewed AHAS modifications that relieve feedback inhibition and then investigated the importance of AHAS modifications in regulating production ratios of three BCAAs. We have comprehensively summarized and discussed metabolic engineering strategies to promote BCAAs synthesis in C. glutamicum and offer solutions to the barriers associated with BCAAs biosynthesis. We also considered the future applications of strains that could produce abundant amounts of BCAAs. Conclusions Branched chain amino acids have been synthesized by engineering the metabolism of C. glutamicum. Future investigations should focus on the feedback inhibition and/or transcription attenuation mechanisms of crucial enzymes. Enzymes with substrate specificity should be developed and applied to the production of individual BCAAs. The strategies used to construct strains producing BCAAs provide guidance for the biosynthesis of other high value-added compounds.


Biochimie ◽  
1998 ◽  
Vol 80 (2) ◽  
pp. 99-108 ◽  
Author(s):  
M. Monsigny ◽  
C. Quétard ◽  
S. Bourgerie ◽  
D. Delay ◽  
C. Pichon ◽  
...  

2021 ◽  
Vol 43 ◽  
Author(s):  
Bruno Silva Guirra ◽  
Caio César Pereira Leal ◽  
Keylan Silva Guirra ◽  
Tatianne Raianne Costa Alves ◽  
Salvador Barros Torres ◽  
...  

Abstract: “Mofumbo” (Combretum leprosum Mart. (Combretaceae) is a neotropical species of wood, pharmacological, beekeeping and environmental importance. Thus, the objective was to evaluate the biochemical and physiological responses in C. leprosum seeds under different storage environments. The experiment was carried out in a factorial (2 x 7), with two storage conditions (natural and climate-controlled environments) and seven storage periods (0; 60; 120; 180; 240; 300 and 360 days), in four replications per treatment. At the beginning of storage and at 60-day intervals, the seeds were analyzed for water content, physiological potential (germination, germination speed index, root and shoot lengths and seedling dry mass) and biochemical (neutral lipids, lipid peroxidation, total and reducing sugars, total free amino acids, and starch). The results indicated that storing “mofumbo” seeds for 360 days reduced viability, being more pronounced after 180 days, regardless of the storage environment. “Mofumbo” seeds were stored in a natural environment for 180 days, resulting in less lipid degradation. After this period, the reduction was associated with the attack of reducing sugars on amino acids. Thus, it is concluded that “mofumbo” seeds must be stored in a natural environment for up to 180 days.


2019 ◽  
Author(s):  
Stefano Bertacchi ◽  
Maurizio Bettiga ◽  
Danilo Porro ◽  
Paola Branduardi

Abstract Background: The sustainability of biorefineries is strongly related to the origin, the availability and the market of the biomass used as feedstock. Moreover, one of the pillars of circular economy aims at reducing waste, ideally to zero. These considerations well justify the increasing industrial interest in exploiting many and diverse residual biomasses. This work focuses on the valorization of the leftover from Camelina sativa oil extraction, named Camelina meal. Despite Camelina meal is used as animal feed, there is an increasing interest in further valorizing its macromolecular content or its nutritional value. Results: Here we valorized Camelina meal hydrolysates by using them as nutrient and energy source for shake-flask fermentations where Rhodosporidium toruloides , a yeast natural producer of carotenoids, accumulated these pigments as desired product. Initially, by total acid hydrolysis we determined that in Camelina meal carbohydrates account for a maximum of 30.8 ± 1.0 %. However, since the acid hydrolysis is not optimal for subsequent microbial fermentation, an enzymatic hydrolysis protocol was assessed, obtaining a maximum sugar recovery of 53.3%. Having stated that, by Separate Hydrolysis and Fermentation, with or without water insoluble solids (SHF, SHF+WIS), or Simultaneous Saccharification and Fermentation (SSF) we obtained 5.51 ± 0.67, 12.64 ± 2.57, and 15.97 ± 0.67 mg/L of carotenoids, respectively, from Camelina meal hydrolysate. Significantly, the presence of WIS, possibly containing microbial inhibitors, correlates with a higher titer of carotenoids, which can be seen as scavengers. Conclusions: The proposed study paves the way for the development of bioprocesses based on the exploitation of Camelina meal, scarcely investigated in the field before, as feedstock. The processes depicted provide an example of how different final products of industrial interests can be obtained from this leftover, such as pure carotenoids and carotenoid-enriched Camelina meal for the feed industry, without diminishing but possibly increasing its initial value. These data provide valuable basis for the economic evaluations necessary to assess the feasibility of a bioprocess based on Camelina meal to obtain high-value added products.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2221
Author(s):  
Adila Fazliyana Aili Hamzah ◽  
Muhammad Hazwan Hamzah ◽  
Hasfalina Che Man ◽  
Nur Syakina Jamali ◽  
Shamsul Izhar Siajam ◽  
...  

Pineapple waste accounts for a significant part of waste accumulated in landfill which will further contribute to the release of greenhouse gases. With the rising pineapple demands worldwide, the abundance of pineapple waste and its disposal techniques are a major concern. Exploiting the pineapple waste into valuable products could be the most sustainable way of managing these residues due to their useful properties and compositions. In this review, we concentrated on producing useful products from on-farm pineapple waste and processing waste. Bioenergy is the most suitable option for green energy to encounter the increasing demand for renewable energy and promotes sustainable development for agricultural waste. The presence of protease enzyme in pineapple waste makes it a suitable raw material for bromelain production. The high cellulose content present in pineapple waste has a potential for the production of cellulose nanocrystals, biodegradable packaging and bio-adsorbent, and can potentially be applied in the polymer, food and textile industries. Other than that, it is also a suitable substrate for the production of wine, vinegar and organic acid due to its high sugar content, especially from the peel wastes. The potentials of bioenergy production through biofuels (bioethanol, biobutanol and biodiesel) and biogas (biomethane and biohydrogen) were also assessed. The commercial use of pineapples is also highlighted. Despite the opportunities, future perspectives and challenges concerning pineapple waste utilisation to value-added goods were also addressed. Pineapple waste conversions have shown to reduce waste generation, and the products derived from the conversion would support the waste-to-wealth concept.


2020 ◽  
Vol 24 (2) ◽  
pp. 105
Author(s):  
Edvan Arifsaputra Suherman ◽  
Maelita Ramdani Moeis ◽  
Elvi Restiawaty

Endoglucanase is used in industries that apply high temperatures, such as bioethanol, detergent, paper, and animal feed industries. Most available endoglucanases have very low stability at high temperatures. Therefore, this study aimed to identfy a new thermostable endoglucanase that is able to maintain its actvity at high temperatures. Five isolates of thermophilic bacteria were previously isolated from the hydrothermal vent of West Kawio, Indonesia. Among them, the DSI2 isolate showed the highest endoglucanase actvity, and was identfed and named as Bacillus safensis DSI2. The EgDSI2 gene was cloned from B. safensis DSI2. EgDSI2 is 1851 bp long encoding a protein of 616 amino acids. The encoded protein, EgDSI2, has high sequence identty to other B. safensis endoglucanases and was predicted with the Compute pI/Mw tool to be 69.41 kDa. EgDSI2 was high in hydrophobic amino acids. The enzyme had higher percentage of Ala andPro, and lower percentage of Gly compared to thermolabile endoglucanases from two Bacillus species. EgDSI2 harbored a catalytc domain belonging to glycosyl hydrolase family 9 (GH9) and a type 3 cellulose‐binding domain (CBM3). Propertes of endoglucanases with GH9‐CBM3 modular organizaton include actvity over a wide pH range, high optmum temperature, and thermostablity. Therefore, EgDSI2 has potental applicatons in the industries.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Reann Garrett ◽  
Danielle Bellmer ◽  
William McGlynn ◽  
Patricia Rayas-Duarte

Brewer’s spent grain (BSG) is a processing waste generated in large quantities by the brewing industry. It is estimated that over 38 million tons of BSG is produced worldwide each year and is usually used as animal feed, composted, or thrown into landfills. BSG contains valuable nutritional components, including protein, fiber, and antioxidants. Due to its brittle texture, strong nutty flavors, and dark color profiles, BSG has seen limited use in food products for human consumption. The objective of this study was to develop a palatable chip product that maximized the level of inclusion of BSG. Chips were produced that contained BSG levels ranging from 8% to 40%, and the physical and sensory properties of the chips were evaluated. Spent grain samples were provided by Iron Monk in Stillwater and were dried at a low temperature and milled into flour for use in the chip formulation. BSG chips were evaluated for water activity, color, and texture (fracture force). An informal sensory evaluation was conducted to evaluate flavor, texture, and probability of purchase using a 5-point hedonic rating scale. Results showed that there were no significant differences in the texture of the chips containing different levels of BSG. The color measurements showed no significant differences between L ∗ and a ∗ values for the chips containing different inclusion levels of BSG, but there were some differences in the b ∗ values. Results from the sensory evaluation showed that consumers preferred the texture of chips with 40% BSG over chips with 8% BSG, and they were also more likely to purchase the 40% BSG chips. There were no significant differences in flavor among the chips containing different inclusion levels of BSG. These results suggest that, for a chip-type product, BSG inclusion levels up to 40% are possible with positive consumer responses. Development of an alternative value-added product represents an opportunity for breweries nationwide to turn a processing waste into a future asset.


1962 ◽  
Vol 39 (3) ◽  
pp. 345-352
Author(s):  
H. BARNES

1. The results of some chemical analyses for inorganic and organic constituents of the seminal plasma of Balanus balanus are presented. 2. The inorganic ions show a cation deficit of 178 m-equiv./l., which is probably made up by free amino-acids. 3. Cystine is a prominent amino acid present. 4. Potassium and calcium are present in excess of their quantities in sea water. 5. Reducing sugars, compared with the amount found in sea-urchin spermatozoa, are found in moderate quantities, 1 mg./ml. 6. Phosphorus of all kinds is present in only small quantities (total of o.14 mg./ml.). 7. Some phosphatases are present. 8. There are 21 /µg./ml. of ascorbic acid; the function of this is discussed in relation to its possible contribution to the protective action against the poisoning of -SH groups by thiol-reactive agents.


Author(s):  
Charu Gupta ◽  
Consuelo Pacheco ◽  
Dhan Prakash

Lactoserum, a byproduct of cheese industry, is rich in nutrients, but it is discharged directly into the environment. It has many human applications that promise to be a complete nutraceutical for the future generations. It is of high nutritive value and its products can be used as functional ingredients in food and pharmaceutical applications and as nutrients in dietary and health foods. They contain full spectrum of amino acids including essential and branched-chain amino acids which are important in tissue growth and repair. The other biological activities of lactoserum are antibiotic, anti-cancer, anti-toxin, immune-enhancer, and prebiotic (growth enhancement of gut microflora such as bifidobacteria). Lactoserum can thus be used as nutraceutical in various products like infant formulas, food supplements, cheese spreads, sports bars, and beverages to meet a variety of health goals for people of all ages, including animal feed.


Sign in / Sign up

Export Citation Format

Share Document