molecular plasticity
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 13)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
Vol 4 (4) ◽  
pp. 17640-17670
Author(s):  
Aline Elide da Silva Barbosa ◽  
Jordana Maria Azevedo -Martins ◽  
Beatriz Aires Lopes ◽  
Inês Juliana Martorano Giardini ◽  
Carmen Veríssima Ferreira -Halder

Author(s):  
Dirk Lindenblatt ◽  
Violetta Applegate ◽  
Anna Nickelsen ◽  
Merlin Klußmann ◽  
Ines Neundorf ◽  
...  

2020 ◽  
Vol 60 (6) ◽  
pp. 1531-1543 ◽  
Author(s):  
Sebastian G Alvarado

Synopsis Animal coloration has been rigorously studied and has provided morphological implications for fitness with influences over social behavior, predator–prey interactions, and sexual selection. In vertebrates, its study has developed our understanding across diverse fields ranging from behavior to molecular biology. In the search for underlying molecular mechanisms, many have taken advantage of pedigree-based and genome-wide association screens to reveal the genetic architecture responsible for pattern variation that occurs in early development. However, genetic differences do not provide a full picture of the dynamic changes in coloration that are most prevalent across vertebrates at the molecular level. Changes in coloration that occur in adulthood via phenotypic plasticity rely on various social, visual, and dietary cues independent of genetic variation. Here, I will review the contributions of pigment cell biology to animal color changes and recent studies describing their molecular underpinnings and function. In this regard, conserved epigenetic processes such as DNA methylation play a role in lending plasticity to gene regulation as it relates to chromatophore function. Lastly, I will present African cichlids as emerging models for the study of pigmentation and molecular plasticity for animal color changes. I posit that these processes, in a dialog with environmental stimuli, are important regulators of variation and the selective advantages that accompany a change in coloration for vertebrate animals.


2020 ◽  
Vol 76 (10) ◽  
pp. 982-992
Author(s):  
Prateek Raj ◽  
S. Karthik ◽  
S. M. Arif ◽  
U. Varshney ◽  
M. Vijayan

Mycobacterium smegmatis MutT1 (MsMutT1) is a sanitation enzyme made up of an N-terminal Nudix hydrolase domain and a C-terminal domain resembling a histidine phosphatase. It has been established that the action of MutT1 on 8-oxo-dGTP, 8-oxo-GTP and diadenosine polyphosphates is modulated by intermolecular interactions. In order to further explore this and to elucidate the structural basis of its differential action on 8-oxo-NTPs and unsubstituted NTPs, the crystal structures of complexes of MsMutT1 with 8-oxo-dGTP, GMPPNP and GMPPCP have been determined. Replacement soaking was used in order to ensure that the complexes were isomorphous to one another. Analysis of the structural data led to the elucidation of a relationship between the arrangements of molecules observed in the crystals, molecular plasticity and the action of the enzyme on nucleotides. The dominant mode of arrangement involving a head-to-tail sequence predominantly leads to the generation of NDPs. The other mode of packing arrangement appears to preferentially generate NMPs. This work also provides interesting insights into the dependence of enzyme action on the conformation of the ligand. The possibility of modulating the enzyme action through differences in intermolecular interactions and ligand conformations makes MsMutT1 a versatile enzyme.


2020 ◽  
Author(s):  
Zhexin Wang ◽  
Michael Grange ◽  
Thorsten Wagner ◽  
Ay Lin Kho ◽  
Mathias Gautel ◽  
...  

AbstractSarcomeres are the force-generating and load-bearing devices of muscles. A precise molecular understanding of how the entire sarcomere is built is required to understand its role in health, disease and ageing. Here, we determine the in situ molecular architecture of vertebrate skeletal sarcomeres through electron cryo-tomography of cryo-focused ion beam-milled native myofibrils. The reconstructions reveal the three-dimensional organisation and interaction of actin and myosin filaments in the A-band, I-band and Z-disc and demonstrate how α -actinin cross-links antiparallel actin filaments to form a mesh-like structure in the Z-disc at an unprecedented level of molecular detail. A prominent feature is a so-far undescribed doublet of α-actinin cross-links with ∼ 6 nm spacing. Sub-volume averaging shows the interaction between myosin, tropomyosin and actin in molecular detail at ∼ 10 Å resolution and reveals two coexisting conformations of actin-bound heads. The flexible orientation of the lever arm and the essential and regulatory light chains allow the two heads of the “double-headed” myosin not only to interact with the same actin filament but also to split between two actin filaments. Our results provide new insights into the conformational plasticity and fundamental organisation of vertebrate skeletal muscle and serve as a strong foundation for future in situ investigations of muscle diseases.


2020 ◽  
Vol 117 (12) ◽  
pp. 6339-6348 ◽  
Author(s):  
Shih-Ting Wang ◽  
Melissa A. Gray ◽  
Sunting Xuan ◽  
Yiyang Lin ◽  
James Byrnes ◽  
...  

DNA nanotechnology has established approaches for designing programmable and precisely controlled nanoscale architectures through specific Watson−Crick base-pairing, molecular plasticity, and intermolecular connectivity. In particular, superior control over DNA origami structures could be beneficial for biomedical applications, including biosensing, in vivo imaging, and drug and gene delivery. However, protecting DNA origami structures in complex biological fluids while preserving their structural characteristics remains a major challenge for enabling these applications. Here, we developed a class of structurally well-defined peptoids to protect DNA origamis in ionic and bioactive conditions and systematically explored the effects of peptoid architecture and sequence dependency on DNA origami stability. The applicability of this approach for drug delivery, bioimaging, and cell targeting was also demonstrated. A series of peptoids (PE1–9) with two types of architectures, termed as “brush” and “block,” were built from positively charged monomers and neutral oligo-ethyleneoxy monomers, where certain designs were found to greatly enhance the stability of DNA origami. Through experimental and molecular dynamics studies, we demonstrated the role of sequence-dependent electrostatic interactions of peptoids with the DNA backbone. We showed that octahedral DNA origamis coated with peptoid (PE2) can be used as carriers for anticancer drug and protein, where the peptoid modulated the rate of drug release and prolonged protein stability against proteolytic hydrolysis. Finally, we synthesized two alkyne-modified peptoids (PE8 and PE9), conjugated with fluorophore and antibody, to make stable DNA origamis with imaging and cell-targeting capabilities. Our results demonstrate an approach toward functional and physiologically stable DNA origami for biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document