histidine sensor kinase
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 0)

2021 ◽  
Vol 52 (1) ◽  
Author(s):  
Yang Yang ◽  
Pei Hu ◽  
Lixu Gao ◽  
Xiang Yuan ◽  
Philip R. Hardwidge ◽  
...  

AbstractQseC, a histidine sensor kinase of the QseBC two-component system, acts as a global regulator of bacterial stress resistance, biofilm formation, and virulence. The function of QseC in some bacteria is well understood, but not in Pasteurella multocida. We found that deleting qseC in P. multocida serotype A:L3 significantly down-regulated bacterial virulence. The mutant had significantly reduced capsule production but increased resistance to oxidative stress and osmotic pressure. Deleting qseC led to a significant increase in qseB expression. Transcriptome sequencing analysis showed that 1245 genes were regulated by qseC, primarily those genes involved in capsule and LPS biosynthesis and export, biofilm formation, and iron uptake/utilization, as well as several immuno-protection related genes including ompA, ptfA, plpB, vacJ, and sodA. In addition to presenting strong immune protection against P. multocida serotypes A:L1 and A:L3 infection, live ΔqseC also exhibited protection against P. multocida serotype B:L2 and serotype F:L3 infection in a mouse model. The results indicate that QseC regulates capsular production and virulence in P. multocida. Furthermore, the qseC mutant can be used as an attenuated vaccine against P. multocida strains of multiple serotypes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Amine Mohamed Boukerb ◽  
Melyssa Cambronel ◽  
Sophie Rodrigues ◽  
Ouiza Mesguida ◽  
Rikki Knowlton ◽  
...  

Prokaryotes and eukaryotes have coexisted for millions of years. The hormonal communication between microorganisms and their hosts, dubbed inter-kingdom signaling, is a recent field of research. Eukaryotic signals such as hormones, neurotransmitters or immune system molecules have been shown to modulate bacterial physiology. Among them, catecholamines hormones epinephrine/norepinephrine, released during stress and physical effort, or used therapeutically as inotropes have been described to affect bacterial behaviors (i.e., motility, biofilm formation, virulence) of various Gram-negative bacteria (e.g., Escherichia coli, Salmonella enterica serovar Typhimurium, Pseudomonas aeruginosa, Vibrio sp.). More recently, these molecules were also shown to influence the physiology of some Gram-positive bacteria like Enterococcus faecalis. In E. coli and S. enterica, the stress-associated mammalian hormones epinephrine and norepinephrine trigger a signaling cascade by interacting with the QseC histidine sensor kinase protein. No catecholamine sensors have been well described yet in other bacteria. This review aims to provide an up to date report on catecholamine sensors in eukaryotes and prokaryotes, their transport, and known effects on bacteria.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Tamara Renata Machado Ribeiro ◽  
Mateus Kawata Salgaço ◽  
Maria Angela Tallarico Adorno ◽  
Miriam Aparecida da Silva ◽  
Roxane Maria Fontes Piazza ◽  
...  

Abstract Background The intestinal microbiota plays a crucial role in human health, adjusting its composition and the microbial metabolites protects the gut against invading microorganisms. Enteroaggregative E. coli (EAEC) is an important diarrheagenic pathogen, which may cause acute or persistent diarrhea (≥14 days). The outbreak strain has the potent Shiga toxin, forms a dense biofilm and communicate via QseBC two-component system regulating the expression of many important virulence factors. Results Herein, we investigated the QseC histidine sensor kinase role in the microbiota shift during O104:H4 C227–11 infection in the colonic model SHIME® (Simulator of the Human Intestinal Microbial Ecosystem) and in vivo mice model. The microbiota imbalance caused by C227–11 infection affected ỿ-Proteobacteria and Lactobacillus spp. predominance, with direct alteration in intestinal metabolites driven by microbiota change, such as Short-chain fatty acids (SCFA). However, in the absence of QseC sensor kinase, the microbiota recovery was delayed on day 3 p.i., with change in the intestinal production of SCFA, like an increase in acetate production. The higher predominance of Lactobacillus spp. in the microbiota and significant augmented qseC gene expression levels were also observed during C227–11 mice infection upon intestinal depletion. Novel insights during pathogenic bacteria infection with the intestinal microbiota were observed. The QseC kinase sensor seems to have a role in the microbiota shift during the infectious process by Shiga toxin-producing EAEC C227–11. Conclusions The QseC role in C227–11 infection helps to unravel the intestine microbiota modulation and its metabolites during SHIME® and in vivo models, besides they contribute to elucidate bacterial intestinal pathogenesis and the microbiota relationships.


2017 ◽  
Vol 199 (8) ◽  
Author(s):  
Christopher T. Parker ◽  
Regan Russell ◽  
Jacqueline W. Njoroge ◽  
Angel G. Jimenez ◽  
Ron Taussig ◽  
...  

ABSTRACT The histidine sensor kinase (HK) QseC senses autoinducer 3 (AI-3) and the adrenergic hormones epinephrine and norepinephrine. Upon sensing these signals, QseC acts through three response regulators (RRs) to regulate the expression of virulence genes in enterohemorrhagic Escherichia coli (EHEC). The QseB, QseF, and KdpE RRs that are phosphorylated by QseC constitute a tripartite signaling cascade having different and overlapping targets, including flagella and motility, the type three secretion system encoded by the locus of enterocyte effacement (LEE), and Shiga toxin. We modeled the tertiary structure of QseC's periplasmic sensing domain and aligned the sequences from 12 different species to identify the most conserved amino acids. We selected eight amino acids conserved in all of these QseC homologues. The corresponding QseC site-directed mutants were expressed and still able to autophosphorylate; however, four mutants demonstrated an increased basal level of phosphorylation. These mutants have differential flagellar, motility, LEE, and Shiga toxin expression phenotypes. We selected four mutants for more in-depth analyses and found that they differed in their ability to phosphorylate QseB, KdpE, and QseF. This suggests that these mutations in the periplasmic sensing domain affected the region downstream of the QseC signaling cascade and therefore can influence which pathway QseC regulates. IMPORTANCE In the foodborne pathogen EHEC, QseC senses AI-3, epinephrine, and norepinephrine, increases its autophosphorylation, and then transfers its phosphate to three RRs: QseB, QseF, and KdpE. QseB controls expression of flagella and motility, KdpE controls expression of the LEE region, and QseF controls the expression of Shiga toxin. This tripartite signaling pathway must be tightly controlled, given that flagella and the type three secretion system (T3SS) are energetically expensive appendages and Shiga toxin expression leads to bacterial cell lysis. Our data suggest that mutations in the periplasmic sensing loop of QseC differentially affect the expression of the three arms of this signaling cascade. This suggests that these point mutations may change QseC's phosphotransfer preferences for its RRs.


mBio ◽  
2014 ◽  
Vol 5 (6) ◽  
Author(s):  
Meredith M. Curtis ◽  
Regan Russell ◽  
Cristiano G. Moreira ◽  
Adeniyi M. Adebesin ◽  
Changguang Wang ◽  
...  

ABSTRACTInvasive pathogens interface with the host and its resident microbiota through interkingdom signaling. The bacterial receptor QseC, which is a membrane-bound histidine sensor kinase, responds to the host stress hormones epinephrine and norepinephrine and the bacterial signal AI-3, integrating interkingdom signaling at the biochemical level. Importantly, the QseC signaling cascade is exploited by many bacterial pathogens to promote virulence. Here, we translated this basic science information into development of a potent small molecule inhibitor of QseC, LED209. Extensive structure activity relationship (SAR) studies revealed that LED209 is a potent prodrug that is highly selective for QseC. Its warhead allosterically modifies lysines in QseC, impairing its function and preventing the activation of the virulence program of several Gram-negative pathogens bothin vitroand during murine infection. LED209 does not interfere with pathogen growth, possibly leading to a milder evolutionary pressure toward drug resistance. LED209 has desirable pharmacokinetics and does not present toxicityin vitroand in rodents. This is a unique antivirulence approach, with a proven broad-spectrum activity against multiple Gram-negative pathogens that cause mammalian infections.IMPORTANCEThere is an imminent need for development of novel treatments for infectious diseases, given that one of the biggest challenges to medicine in the foreseeable future is the emergence of microbial antibiotic resistance. Here, we devised a broad-spectrum antivirulence approach targeting a conserved histidine kinase, QseC, in several Gram-negative pathogens that promotes their virulence expression. The LED209 QseC inhibitor has a unique mode of action by acting as a prodrug scaffold to deliver a warhead that allosterically modifies QseC, impeding virulence in several Gram-negative pathogens.


2007 ◽  
Vol 189 (14) ◽  
pp. 5361-5371 ◽  
Author(s):  
Davide Quaranta ◽  
Reid McCarty ◽  
Vahe Bandarian ◽  
Christopher Rensing

ABSTRACT The genome sequences of several pseudomonads have revealed a gene cluster containing genes for a two-component heavy metal histidine sensor kinase and response regulator upstream of cinA and cinQ, which we show herein to encode a copper-containing azurin-like protein and a pre-Q0 reductase, respectively. In the presence of copper, Pseudomonas putida KT2440 produces the CinA and CinQ proteins from a bicistronic mRNA. UV-visible spectra of CinA show features at 439, 581, and 719 nm, which is typical of the plastocyanin family of proteins. The redox potential of the protein was shown to be 456 ± 4 mV by voltametric titrations. Surprisingly, CinQ is a pyridine nucleotide-dependent nitrile oxidoreductase that catalyzes the conversion of pre-Q0 to pre-Q1 in the nucleoside queuosine biosynthetic pathway. Gene disruptions of cinA and cinQ did not lead to a significant increase in the copper sensitivity of P. putida KT2440 under the conditions tested. Possible roles of CinA and CinQ to help pseudomonads adapt and survive under prolonged copper stress are discussed.


Sign in / Sign up

Export Citation Format

Share Document