scholarly journals Signaling molecule glutamic acid initiates the expression of genes related to methylglyoxal scavenging and osmoregulation systems in maize seedlings

Author(s):  
Xue-Mei Qiu ◽  
Yu-Ying Sun ◽  
Zhong-Guang Li
2020 ◽  
Vol 100 (3) ◽  
pp. 296-303
Author(s):  
Tie Dong Liu ◽  
Xi Wen Zhang ◽  
Yong Xu

Red light significantly affects the expression of plant photoreceptor genes and influences stomatal development through crosstalk of the constitutive photomorphogenic 1–cryptochrome–phytochrome signaling pathway. When blue light was replaced with red light, the expression levels of ZmCry1, ZmPhyB1, ZmEPF2, and ZmEPFL9 were enhanced, whereas that of ZmCOP1 was restricted. Moreover, the expression levels of ZmSPCH and ZmMUTE were also enhanced, but they were generally lower than those under white light. Consequently, stomatal formation, which was determined by net photosynthesis, stomatal conductance, intercellular CO2 concentration, and transpiration rate, was inhibited through decreased stomatal index and stomatal density. We conclude that red light positively regulates EPFL9 in the intercellular signaling but reduces the positive regulation of blue light on COP1 and epidermal patterning factor 2 in the intracellular and intercellular signaling; therefore, though red light promotes the gene’s function on stomatal development of seedling maize, blue light maybe dominant to red light in seedling stage.


2021 ◽  
Vol 37 ◽  
pp. e37079
Author(s):  
Milena Christy Santos ◽  
Édila Vilela de Resende Von Pinho ◽  
Heloisa Oliveira dos Santos ◽  
Danielle Rezende Vilela ◽  
Izabel Costa Silva Neta ◽  
...  

Drought stress is a major limiting factor for the development of maize, and the identification of the expression of genes related to this stress in seeds and seedlings can be an important tool to accelerate the selection process. The expression of genes related to tolerance to water deficit in seeds and in different tissues of maize seedlings were evaluated. Four tolerant genotypes (91-T, 32-T, 91x75-T, 32x75-T) and four non-tolerant genotypes (37-NT, 57-NT, 37x57-NT and 31x37-NT) were seeded in a substrate with 10% (stress) and 70% (control) water retention capacity. The expression of 4 enzymes were evaluated: catalase (CAT), peroxidase (PO), esterase (EST), and heat-resistant protein (HRP), as well as the relative expression of 6 genes: ZmLEA3, ZmPP2C, ZmCPK11, ZmDREB2A/2.1s, ZmDBP3 and ZmAN13 were evaluated in seed, shoots and roots of seedlings submitted or not to stress. There was variation in the expression of CAT, PO, SOD, EST and HRP enzymes among the evaluated genotypes and also in the different tissues evaluated. Higher expression of the CAT and PO was observed in the shoots. There was a greater expression of the EST in the genotypes non-tolerant to water deficit. HRP was expressed only in seeds. In the aerial part of maize seedlings, classified as tolerant, higher expression of genes ZmLEA3 and ZmCPK11 was observed. There was a higher expression of the ZmAN13 and ZmDREB2A/2.1S genes in roots developed under stress conditions and a higher expression of the ZmPP2C gene in seeds of line 91-T, which is classified as tolerant to drought stress.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Carlos Poblete Jara ◽  
Beatriz de Andrade Berti ◽  
Natália Ferreira Mendes ◽  
Daiane Fátima Engel ◽  
Ariane Maria Zanesco ◽  
...  

AbstractGlutamic acid is the main excitatory neurotransmitter acting both in the brain and in peripheral tissues. Abnormal distribution of glutamic acid receptors occurs in skin hyperproliferative conditions such as psoriasis and skin regeneration; however, the biological function of glutamic acid in the skin remains unclear. Using ex vivo, in vivo and in silico approaches, we showed that exogenous glutamic acid promotes hair growth and keratinocyte proliferation. Topical application of glutamic acid decreased the expression of genes related to apoptosis in the skin, whereas glutamic acid increased cell viability and proliferation in human keratinocyte cultures. In addition, we identified the keratinocyte glutamic acid excitotoxic concentration, providing evidence for the existence of a novel skin signalling pathway mediated by a neurotransmitter that controls keratinocyte and hair follicle proliferation. Thus, glutamic acid emerges as a component of the peripheral nervous system that acts to control cell growth in the skin. These results raise the perspective of the pharmacological and nutritional use of glutamic acid to treat skin diseases.


2020 ◽  
Author(s):  
Lijie Li ◽  
Wanrong Gu ◽  
Liguo Zhang ◽  
Congfeng Li ◽  
Xichang Chen ◽  
...  

Abstract Background: Soil salinity restricts plant growth and productivity. 2-(3,4-dichlorophenoxy) triethylamine (DCPTA) can alleviate salinity stress in plants. However, the mechanism of DCPTA-mediated salinity tolerance has not been fully clarified. We aimed to investigate its role in enhancing photosynthetic capacity, improving water status, maintaining K+/Na+ homeostasis and alleviating salinity stress in maize (Zea mays L.).Results: In present study, maize seedlings were grown in nutrient solutions with a combination of NaCl (0, 150 mM) and DCPTA (0, 20, 100, and 400 μM). And photosynthesis, water status, ion homeostasis and the expression of genes involved in ion uptake and transport were evaluated in the maize seedlings. The results demonstrated that DCPTA alleviated the growth inhibition of maize seedlings exposed to salinity stress by increasing the net photosynthetic rate (Pn) and the quantum efficiency of photosystem II (PSII) photochemistry. DCPTA improved the root hydraulic conductivity, which help maintained the water status. A relatively high K+ concentration but a relatively low Na+ concentration and the Na+/K+ ratio were observed in the presence of DCPTA under salinity stress. Additionally, DCPTA altered the expression of four genes (ZmSOS1, ZmHKT1, ZmNHX1 and ZmSKOR) that encode membrane transport proteins responsible for K+/Na+ homeostasis.Conclusions: DCPTA improved the salinity tolerance of maize may be associated with enhanced photosynthetic capacity, maintenance of water status and altered expression of genes involved in ion uptake and transport.


2020 ◽  
Author(s):  
Carlos Poblete Jara ◽  
Beatriz de Andrade Berti ◽  
Natalia Ferreira Mendes ◽  
Daiane F. Engel ◽  
Ariane Maria Zanesco ◽  
...  

AbstractGlutamic Acid is the main excitatory neurotransmitter in neurons. Abnormal distributions of the glutamic acid receptors have been shown in hyper proliferative models such as psoriasis and skin regeneration. However, the biological function of glutamic acid in the skin remains unclear. Using ex vivo, in vivo and in silico approaches, we showed for the first time that exogenous glutamic acid promotes hair growth and keratinocyte proliferation. Topical application of glutamic acid decreased expression of genes related to apoptosis signaling in the skin. Also, we showed Glutamic acid increased viability and proliferation in cultured human keratinocyte. For the first time, we identified the excitotoxic GA concentration and we provided evidence for the existence of a novel skin signaling pathway mediated by a neurotransmitter controlling keratinocyte and hair follicle proliferation. In perspective, we anticipate our results could be the starting point to elucidate how exogenous glutamic acid from food intake or even endogenous GA from neuropsychiatric disorders modulate skin diseases.


2016 ◽  
Vol 58 (1) ◽  
pp. 67-80
Author(s):  
Hubert Sytykiewicz ◽  
Marcin Horbowicz ◽  
Wiesław Wiczkowski ◽  
Danuta Koczkodaj ◽  
Joanna Mitrus ◽  
...  

Abstract The objective of the study was to assess the influence of methyl jasmonate (MJ) vapors on accumulation of 2-phenylethylamine (PEA), phenylacetic acid (PAA) and 2-phenylethanol (PE) in leaves and roots of maize (Zea mays L. subsp. mays, saccharata group, cv. Złota Karłowa) seedlings. Furthermore, we analyzed the expression patterns of eight genes (ADH1, ADH2, AO2, CAO, PDC1, PDC2, PTA and LOX, encoding alcohol dehydrogenase 1 and 2, primary amine oxidase, aldehyde oxidase 2, phenylalanine decarboxylase 1 and 2, phenylalanine (histidine) transaminase and lipoxygenase, respectively) involved in biosynthesis and turnover of PEA in maize tissues. In addition, the effect of MJ application on fresh biomass and growth of the tested seedlings was recorded. One-day MJ exposure increased the fresh weight of aerial parts and roots of Z. mays seedlings, whereas the opposite tendency occurred after 4-day of MJ treatment. One-day application of MJ resulted in an increase in the length of roots and its fluctuations in the aerial parts of maize plants, but extended exposure declined the growth of both parts of the seedlings. Methyl jasmonate elicitation caused various changes in the contents of PEA, PAA and PE in the maize seedlings. MJ treatments led to high upregulation of most genes, with the exception of three genes (i.e., ADH1, ADH2 and AO2) whose expression was downregulated after a 4-day exposure.


Toxins ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 549 ◽  
Author(s):  
Xu ◽  
Ma ◽  
Fan ◽  
Yan ◽  
Zhang ◽  
...  

Biodegradation is efficient for removing cyanobacterial toxins, such as microcystins (MCs) and nodularin (NOD). However, not all the microbial strains with the microcystin-biodegrading enzymes MlrA and MlrC could biodegrade NOD. Studies on genes and enzymes for biodegrading NOD can reveal the function and the biodegradation pathway of NOD. Based on successful cloning and expression of the USTB-05-A and USTB-05-C genes from Sphingopyxis sp. USTB-05, which are responsible for the biodegradation of MCs, the pathway for biodegrading NOD by these two enzymes was investigated in this study. The findings showed that the enzyme USTB-05-A converted cyclic NOD (m/z 825.4516) into its linear type as the first product by hydrolyzing the arginine and Adda peptide bond, and that USTB-05-C cut off the Adda and glutamic acid peptide bond of linearized NOD (m/z 843.4616) and produced dimeric Adda (m/z 663.4377) as the second product. Further, based on the homology modeling of enzyme USTB-05-A, site-directed mutants of USTB-05-A were constructed and seven crucial sites for enzyme USTB-05-A activity were found. A complete enzymatic mechanism for NOD biodegradation by USTB-05-A in the first step was proposed: glutamic acid 172 and histidine 205 activate a water molecule facilitating a nucleophilic attack on the arginine and Adda peptide bond of NOD; tryptophan 176 and tryptophan 201 contact the carboxylate side chain of glutamic acid 172 and accelerate the reaction rates; and histidine 260 and asparagine 264 function as an oxyanion hole to stabilize the transition states.


2004 ◽  
Vol 171 (4S) ◽  
pp. 162-162
Author(s):  
Paul Thelen ◽  
Michal Grzmil ◽  
Iris E. Eder ◽  
Barbara Spengler ◽  
Peter Burfeind ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document