antarctic toothfish
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 24)

H-INDEX

16
(FIVE YEARS 2)

Marine Policy ◽  
2022 ◽  
Vol 136 ◽  
pp. 104903
Author(s):  
Julian Ashford ◽  
Michael Dinniman ◽  
Cassandra Brooks ◽  
Lian Wei ◽  
Guoping Zhu

2021 ◽  
Vol 12 ◽  
Author(s):  
Ying Wang ◽  
Huamin Wang ◽  
Linghong Hu ◽  
Liangbiao Chen

Leptin is a cytokine-like peptide, predominantly biosynthesized in adipose tissue, which plays an important role in regulating food intake, energy balance and reproduction in mammals. However, how it may have been modified to enable life in the chronic cold is unclear. Here, we identified a leptin-a gene (lepa) in the cold-adapted and neutrally buoyant Antarctic toothfish Dissostichus mawsoni that encodes a polypeptide carrying four α-helices and two cysteine residues forming in-chain disulfide bonds, structures shared by most vertebrate leptins. Quantitative RT-PCR confirmed that mRNA levels of the leptin-a gene of D. mawsoni (DM-lepa) were highest in muscle, followed by kidney and liver; detection levels were low in the gill, brain, intestine, and ovary tissues. Compared with leptin-a genes of fishes living in warmer waters, DM-lepa underwent rapid evolution and was subjected to positive selection. Over-expression of DM-lepa in the zebrafish cell line ZFL resulted in signal accumulation in the cytoplasm and significantly increased cell proliferation both at the normal culture temperature and under cold treatment. DM-lepa over-expression also reduced apoptosis under low-temperature stress and activated the STAT3 signaling pathway, in turn upregulating the anti-apoptotic proteins bcl2l1, bcl2a, myca and mdm2 while downregulating the pro-apoptotic baxa, p53 and caspase-3. These results demonstrate that DM-lepa, through STAT3 signaling, plays a protective role in cold stress by preventing apoptotic damage. Our study reveals a new role of lepa in polar fish.


2021 ◽  
Vol 8 ◽  
Author(s):  
Hee-kyu Choi ◽  
Ji Eun Jang ◽  
Seo Yeon Byeon ◽  
Yu Rim Kim ◽  
Dale Maschette ◽  
...  

The Antarctic toothfish, Dissostichus mawsoni, serves as a valuable fishery resource around the Antarctic Continent since 1997, managed by the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR). Although delineating genetic or stock structure of populations is crucial for improving fishery management of this species, its number of genetic populations and genetic diversity levels remain ambiguous. In the present study, we assessed the population genetic and phylogeographic structure of the Antarctic toothfish across 20 geographic localities spanning from Subareas 88 (88.1, 88.2, and 88.3) to Subareas 58 (58.4 and 58.5) by using mitochondrial DNA (mtDNA) cytochrome oxidase I (COI) and 16S rRNA (16S) sequences and seven nuclear microsatellite loci. MtDNA revealed a low level of polymorphism (h = 0.571, π = 0.0006) with 40 haplotypes in 392 individuals, connected only by 1–5 mutational steps, which is indicative of shallow evolutionary history. Microsatellites showed a range of allelic richness (AR) from 6.328 (88.3 RB3) to 7.274 (88.3 RB6) within populations. Overall genetic diversity was generally higher in Subareas 58 than in Subareas 88, suggesting that effective population size (NE) is larger in Subareas 58. The results of population analyses using microsatellites suggest that the sampled populations are likely to comprise a well-admixed single gene pool (i.e., one genetic stock), perhaps due to high contemporary gene flow occurring during the prolonged larval phase of this fish. However, given weak, but significant microsatellite differentiation found in six population-pairs, the possibility of existence of multiple genetic populations could not be completely excluded. The mtDNA AMOVA suggests a genetic break between the Subareas 88 and 58 groups (FCT = 0.011, P = 0.004). Moreover, mtDNA genetic distances (FST) between populations were proportionally greater as geographic distances increase. The patterns of isolation by distance (IBD) shown only in mtDNA, but not in microsatellites might suggest that population differentiation or divergence processes underwent faster in mtDNA than microsatellites, due to its NE being only one-quarter of nuclear DNA. Temporal stability in the genetic structure of D. mawsoni is also indicated by the results of no genetic differentiation between juveniles and adults. The findings of this study will help to design effective stock management strategies for this valuable fishery resource. We suggest that a long-term genetic monitoring is needed to understand the population structure and dynamics of toothfish in response to ongoing climate changes.


2021 ◽  
Vol 9 (3) ◽  
pp. 255
Author(s):  
Davide Di Di Blasi ◽  
Simonepietro Canese ◽  
Erica Carlig ◽  
Steven J. Parker ◽  
Eva Pisano ◽  
...  

In situ observation of Antarctic toothfish (Dissostichus mawsoni) is challenging as they typically live at depths greater than 500 m, in dark and ice-covered Antarctic waters. Searching for adequate methodologies to survey Antarctic toothfish in their habitat, we tested a miniaturized Baited Remote Underwater Video camera (BRUV), deployed through holes drilled in the sea ice in the Ross Sea region, over three field seasons. In 2015 three BRUVs were deployed at McMurdo Sound, and paired with a vertical longline sampling. In 2017, three opportunistic deployments were performed at Terra Nova Bay. In 2018 seven deployments at Terra Nova Bay provided preliminary data on the habitat preferences of the species. The design and configuration of the mini-BRUV allowed to collect high-quality video imagery of 60 Antarctic toothfish in 13 deployments from the fast sea ice. The behaviour of fish at the bait, intra-species interactions, and potential biases in individual counting were investigated, setting baselines for future studies on the abundance and distribution of Antarctic toothfish in sea-ice covered areas. This work represents the first step towards the development of protocols for non-extractive monitoring of the Antarctic toothfish in the high-Antarctica coastal shelf areas, of great value in the Ross Sea region where the largest MPA of the world has recently been established.


Sign in / Sign up

Export Citation Format

Share Document