Measurement and modeling of a flexible manipulator for vibration control using five-segment S-curve motion

Author(s):  
Levent Malgaca ◽  
Şefika İpek Lök

User designed manipulators are widely used in industry as a part of automation. The design of lighter robotic arms is required for less energy consumption. Joints, structural features, and payload affect the dynamic behavior of manipulators. Even if the arms have sufficient structural rigidity, joints, or payloads further increase their flexibility. These factors should be considered at the design stage. Flexibility causes vibrations, and these vibrations negatively affect robot repeatability and processing speed. Reducing the vibration levels of flexible manipulators is an attractive issue for engineers and researchers. Accurate estimation of the mathematical model of flexible manipulators increases the success of vibration control. In this paper, the modeling and experiments for vibration control of a single-axis flexible curved manipulator with payload are considered. The experimental system is introduced to collect vibration responses synchronously at the tip of the curved manipulator for angular velocity input. The mathematical model of the manipulator is estimated using the continuous-time system identification (CTSI) method with a black-box model based on the experimental input/output (I/O) signals. A five-segment S-curve motion input based on the modal parameters is designed to suppress residual vibrations. Vibration control is successfully performed for different deceleration times of the designed S-curve motion input. The results showed that the residual vibrations from experiments and predicted models matched well for different cases depending on payload, angular position, and motion time.

Author(s):  
R. Zinko ◽  
P. Kazan ◽  
D. Khaustov ◽  
O. Bilyk

A small intelligence robot (SSR) is a special military intelligence means. It is used to obtain information about the enemy - the collection of intelligence, the search for targets and target indication, observation of the situation, etc. The use of a small intelligence robot is assumed in various natural and climatic conditions: in temperate terrain, on soils with low bearing capacity, at low temperatures, in the desert, on sandy and marshy soils, on rocky soils, in elevated temperature and dustiness of air, and also in conditions highlands In the article an overview of modern developments of remotely controlled robotic military complexes, principles of their construction and perspective directions of development in the armed forces are reviewed. The issues of robotization of existing weapons and military equipment are considered. Every sample of a SSR used in combat action must possess all combat characteristics at once in an optimal ratio between them, ensuring its maximum effectiveness. Ignoring any of the properties or enhancing one property at the expense of others will not enable the full realization of the small surveillance robot. It is reasonable to select the relevant properties at the design stage, using the possibilities of mathematical modeling. The set of tactical and technical characteristics of the SSR allowed forming this. Its characteristics determine the scope and possibilities of application. The mathematical model of the SSR motion is written in the Matlab Simulink environment. Recorded mathematical model of SSR motion, formed single test cycle and input data allowed to conduct computer simulation of motion in possible conditions of operation of small surveillance robot.The single trial cycle presented contains a set of individual sites and reproduces the testing test cycle of a real polygon. On the basis of the developed tactical and technical characteristics of the SSR, the experimental sample was made. An example of the use of SSR for the intelligence of the settlement and at keeping the node of barriers has been provided. The efficiency of performing intelligence units’ tasks and reducing the risk of human losses are shown.


2014 ◽  
Vol 556-562 ◽  
pp. 1354-1357
Author(s):  
Li Gong Cui ◽  
Gui Qiang Liang ◽  
Fang Shao

This paper presents a mathematical method to analyze the influence of each machine tool part deformation on the machining accuracy. Taking a 3-axis machine tool as an example, this paper divides the machine tool into the cutting tool sub-system and workpiece sub-system. Taking the deformation of lower surface of the machine bed as the research target, the mathematical model of the deformation on the displacement of the cutting point was established. In order to distribute the stiffness of each part, the contribution degree of each part on the machining accuracy was analyzed. Using this mathematical model, the stiffness of each part can be distributed at the design stage of the machine tool, and the machining accuracy of the machine tool can be improved economically.


Author(s):  
Chenyu Zhou ◽  
Liangyao Yu ◽  
Yong Li ◽  
Jian Song

Accurate estimation of sideslip angle is essential for vehicle stability control. For commercial vehicles, the estimation of sideslip angle is challenging due to severe load transfer and tire nonlinearity. This paper presents a robust sideslip angle observer of commercial vehicles based on identification of tire cornering stiffness. Since tire cornering stiffness of commercial vehicles is greatly affected by tire force and road adhesion coefficient, it cannot be treated as a constant. To estimate the cornering stiffness in real time, the neural network model constructed by Levenberg-Marquardt backpropagation (LMBP) algorithm is employed. LMBP is a fast convergent supervised learning algorithm, which combines the steepest descent method and gauss-newton method, and is widely used in system parameter estimation. LMBP does not rely on the mathematical model of the actual system when building the neural network. Therefore, when the mathematical model is difficult to establish, LMBP can play a very good role. Considering the complexity of tire modeling, this study adopted LMBP algorithm to estimate tire cornering stiffness, which have simplified the tire model and improved the estimation accuracy. Combined with neural network, A time-varying Kalman filter (TVKF) is designed to observe the sideslip angle of commercial vehicles. To validate the feasibility of the proposed estimation algorithm, multiple driving maneuvers under different road surface friction have been carried out. The test results show that the proposed method has better accuracy than the existing algorithm, and it’s robust over a wide range of driving conditions.


Author(s):  
Julián Andres Gómez Gómez ◽  
Camilo E. Moncada Guayazán ◽  
Sebastián Roa Prada ◽  
Hernando Gonzalez Acevedo

Abstract Gimbals are mechatronic systems well known for their use in the stabilization of cameras which are under the effect of sudden movements. Gimbals help keeping cameras at previously defined fixed orientations, so that the captured images have the highest quality. This paper focuses on the design of a Linear Quadratic Gaussian, LQG, controller, based on the physical modeling of a commercial Gimbal with two degrees of freedom (2DOF), which is used for first-person applications in unmanned aerial vehicle (UAV). This approach is proposed to make a more realistic representation of the system under study, since it guarantees high accuracy in the simulation of the dynamic response, as compared to the prediction of the mathematical model of the same system. The development of the model starts by sectioning the Gimbal into a series of interconnected links. Subsequently, a fixed reference system is assigned to each link body and the corresponding homogeneous transformation matrices are established, which will allow the calculation of the orientation of each link and the displacement of their centers of mass. Once the total kinetic and potential energy of the mechanical components are obtained, Lagrange’s method is utilized to establish the mathematical model of the mechanical structure of the Gimbal. The equations of motion of the system are then expressed in state space form, with two inputs, two outputs and four states, where the inputs are the torques produced by each one of the motors, the outputs are the orientation of the first two links, and the states are the aforementioned orientations along with their time derivatives. The state space model was implemented in MATLAB’s Simulink environment to compare its prediction of the transient response with the prediction obtained with the representation of the same system using MATLAB’s SimMechanics physical modelling interface. The mathematical model of each one of the three-phase Brushless DC motors is also expressed in state space form, where the three inputs of each motor model are the voltages of the corresponding motor phases, its two outputs are the angular position and angular velocity, and its four states are the currents in two of the phases, the orientation of the motor shaft and its rate of change. This model is experimentally validated by performing a switching sequence in both the simulation model and the physical system and observing that the transient response of the angular position of the motor shaft is in accordance with the theoretical model. The control system design process starts with the interconnection of the models of the mechanical components and the models of the Brushless DC Motor, using their corresponding state space representations. The resulting model features six inputs, two outputs and eight states. The inputs are the voltages in each phase of the two motors in the Gimbal, the outputs are the angular positions of the first two links, and the states are the currents in two of the phases for each motor and the orientations of the first two links, along with their corresponding time derivatives. An optimal LQG control system is designed using MATLAB’s dlqr and Kalman functions, which calculate the gains for the control system and the gains for the states estimated by the observer. The external excitation in each of the phases is carried out by pulse width modulation. Finally, the transient response of the overall system is evaluated for different reference points. The simulation results show very good agreement with the experimental measurements.


2020 ◽  
Vol 168 ◽  
pp. 00056
Author(s):  
Vitalii Monastyrskyi ◽  
Serhii Monastyrskyi ◽  
Denis Nomerovskyi ◽  
Borys Mostovyi

To find possible conveyor failures at the design stage means to determine a transverse belt displacement and compare the obtained data with the permissible ones. The dynamic problem of the belt movement on the conveyor has been defined. Resistance and external forces, limits of the belt displacement have been determined. The transverse belt displacement can be described by partial differential equations. To solve the problem, the Fourier transform has been used. Change patterns in the transverse belt conveyor displacement dependent on conveyor’s parameters, type of load, and skewing of the idlers along the conveyor have been obtained. The results agree with experimental data. The method of adaptive control of the transverse belt displacement has been described. The essence of this method is to adapt the model of the moving belt in the conveying trough to changed conditions and to reveal the uncertainty of the control with the known parameters of the mathematical model.


Author(s):  
Hoa Thị Ngọc Nguyễn ◽  
Ngoc Bich Vu ◽  
Tat-Hien Le

Hull form design from parent ships transforms the ship's parameters based on the variation of theoretical sectional area curve of the Lackenby method. The correction and modification of the theoretical sectional area curve is essentially the change of ship displacement, hull form coefficients, and the longitudinal center of buoyancy from the parent ships. In the preliminary design stage, the hull form design approach from parent ships minimizes the risks compared to the new design while still retaining hydrostatic and hydrodynamics' advantages. However, the Lackenby method of ship hull form variation uses a linear or quadratic function to shift the sectional area curves, regardless of the ship's hull form faring, especially the curvature's discontinuity the bow, stern, and midship. Therefore, the computer graphic algorithm based on the B-spline function is studied and applied; simultaneously, the mathematical model for the designed waterline is built in the form of a continuous curve instead of the B-spline segments. In this study, the mathematical model for the coastal container ship's design water line is constructed, ensuring continuity and fairing throughout the continuous B-spline curve. The geometry continuity evaluation results are expressed through the parameter curve's curvature and resistance component calculations' performance by computational analysis.


Author(s):  
Jesus A. Mendoza ◽  
Luis L. Otero

Among other types of wagons, CVG Ferrominera Orinoco (FMO) uses 350 hopper type wagons for ore transportation. Each of these wagons has a mechanical linkage system, made up of nine mobile elements plus a frame to open and close two rotary doors located at the bottom of the wagons. This paper presents development of a mathematical model to find out how the calibrating lengths of the operating mechanism’s four adjustable members allow variations of the angular position of the doors from its fully closed position. The mathematical model is obtained from the total differentials of the kinematics constraints equations and is used to find the relative influence coefficients of each adjustable member on the kinematic accuracy of the doors motion. The results show that the maximum error depends mainly upon the correct positioning of the primary element. It is also proved that two of the adjustable members in the original design do not play an important role in the tight closing.


Author(s):  
K.H. Low ◽  
R.N. Dubey

This work presents a general formulation of flexible manipulator systems. The associated mathematical model results in a hybrid system of equations involving both ordinary and partial differential equations. The perturbation technique and model analysis have been used for the solution. In addition to the lineal deflection theory, an unperturbed joint-motion assumption has then been employed in order to further simplify the mathematical model. Finally, an inverse dynamic problem is solved using the proposed methodology.


2012 ◽  
Vol 232 ◽  
pp. 648-656 ◽  
Author(s):  
Atef A. Ata ◽  
Eman H. Haraz ◽  
A. Elfattah A. Rizk ◽  
Sarwat N. Hanna

The applications of flexible manipulators are increasing and due to the high demand on fuel consumption there is a need to optimize the energy consumption for stable and durable operation of the flexible manipulators. In the present work the Genetic Algorithm (GA) is employed to optimize the total torque and the torque of the first link of a two-link flexible manipulator with a fourth order polynomial trajectory. The mathematical model of the manipulator is obtained using the extended Hamilton's Principle where the flexible links are treated as Euler- Bernoulli's beam theory. A fifth order polynomial trajectory undergoes a rest-to rest maneuvering is proposed as a bench mark for validation.


2018 ◽  
Vol 7 (2.13) ◽  
pp. 145
Author(s):  
Ainura Kairbayeva ◽  
Vitalii Vasilenko ◽  
Seit Dzhinguilbayev ◽  
Lyazzat Baibolova ◽  
Larisa Frolova

The mathematical model for the process of oily raw materials pressing with single-screw oil press has been developed, which makes it possible to calculate the main design parameters of an oil press for extracting oil from oil crop seeds.This model of pressing describes the process of moving meal in the pressure zone and expression of oil in the pressing cage of the screw press, taking into account the following assumptions: porous skeleton and oil have the same density, they have no chemical interaction, the process of oil filtration occurs under isothermal conditions with laminar conditions of motion.The developed mathematical model corresponds to physical meaning of the occurring phenomena and can be used to analyze the work of active presses, and at the design stage. 


Sign in / Sign up

Export Citation Format

Share Document