multiplex sequencing
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 14)

H-INDEX

16
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Bede Constantinides ◽  
Hermione Webster ◽  
Jessica Gentry ◽  
Jasmine Bastable ◽  
Laura Dunn ◽  
...  

Genome sequencing is pivotal to SARS-CoV-2 surveillance, elucidating the emergence and global dissemination of acquired genetic mutations. Amplicon sequencing has proven very effective for sequencing SARS-CoV-2, but prevalent mutations disrupting primer binding sites have necessitated the revision of sequencing protocols in order to maintain performance for emerging virus lineages. We compared the performance of Oxford Nanopore Technologies (ONT) Midnight and ARTIC tiling amplicon protocols using 196 Delta lineage SARS-CoV-2 clinical specimens, and 71 mostly Omicron lineage samples with S gene target failure (SGTF), reflecting circulating lineages in the United Kingdom during December 2021. 96-plexed nanopore sequencing was used. For Delta lineage samples, ARTIC v4 recovered the greatest proportion of >=90% complete genomes (81.1%; 159/193), followed by Midnight (71.5%; 138/193) and ARTIC v3 (34.1%; 14/41). Midnight protocol however yielded higher average genome recovery (mean 98.8%) than ARTIC v4 (98.1%) and ARTIC v3 (75.4%), resulting in less ambiguous final consensus assemblies overall. Explaining these observations were ARTIC v4's superior genome recovery in low viral titre/high cycle threshold (Ct) samples and inferior performance in high titre/low Ct samples, where Midnight excelled. We evaluated Omicron sequencing performance using a revised Midnight primer mix alongside the latest ARTIC v4.1 primers, head-to-head with the existing commercially available Midnight and ARTIC v4 protocols. The revised protocols both improved considerably the recovery of Omicron genomes and exhibited similar overall performance to one another. Revised Midnight protocol recovered >=90% complete genomes for 85.9% (61/71) of Omicron samples vs. 88.7% (63/71) for ARTIC v4.1. Approximate cost per sample for Midnight (12GBP) is lower than ARTIC (16GBP) while hands-on time is considerably lower for Midnight (~7 hours) than ARTIC protocols (~9.5 hours).


2021 ◽  
Vol 12 ◽  
Author(s):  
Gisele Umviligihozo ◽  
Erick Muok ◽  
Emmanuel Nyirimihigo Gisa ◽  
Rui Xu ◽  
Dario Dilernia ◽  
...  

Most studies of HIV-1 transmission have focused on subtypes B and C. In this study, we determined the genomic sequences of the transmitted founder (TF) viruses from acutely infected individuals enrolled between 2005 and 2011 into IAVI protocol C in Rwanda and have compared these isolates to viruses from more recent (2016–2019) acute/early infections in three at risk populations – MSM, high risk women (HRW), and discordant couples (DC). For the Protocol C samples, we utilized near full-length single genome (NFLG) amplification to generate 288 HIV-1 amplicons from 26 acutely infected seroconverters (SC), while for the 21 recent seroconverter samples (13 from HRW, two from DC, and six from MSM), we PCR amplified overlapping half-genomes. Using PacBio SMRT technology combined with the MDPseq workflow, we performed multiplex sequencing to obtain high accuracy sequences for each amplicon. Phylogenetic analyses indicated that the majority of recent transmitted viruses from DC and HRW clustered within those of the earlier Protocol C cohort. However, five of six sequences from the MSM cohort branched together and were greater than 97% identical. Recombination analyses revealed a high frequency (6/26; 23%) of unique inter-subtype recombination in Protocol C with 19% AC and 4% CD recombinant viruses, which contrasted with only 6.5% of recombinants defined by sequencing of the pol gene previously. The frequency of recombinants was significantly higher (12/21; 57%) in the more recent isolates, although, the five related viruses from the MSM cohort had identical recombination break points. While major drug resistance mutations were absent from Protocol C viruses, 4/21 of recent isolates exhibited transmitted nevirapine resistance. These results demonstrate the ongoing evolution and increased prevalence of recombinant and drug resistant transmitted viruses in Rwanda and highlight the importance of defining NFLG sequences to fully understand the nature of TF viruses and in particular the prevalence of unique recombinant forms (URFs) in transmission cohorts.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xingwen Wu ◽  
Hao Luo ◽  
Feng Xu ◽  
Chongtao Ge ◽  
Shaoting Li ◽  
...  

The use of whole genome sequencing (WGS) data generated by the long-read sequencing platform Oxford Nanopore Technologies (ONT) has been shown to provide reliable results for Salmonella serotype prediction in a previous study. To further meet the needs of industry for accurate, rapid, and cost-efficient Salmonella confirmation and serotype classification, we evaluated the serotype prediction accuracy of using WGS data from multiplex ONT sequencing with three, four, five, seven, or ten Salmonella isolates (each isolate represented one Salmonella serotype) pooled in one R9.4.1 flow cell. Each multiplexing strategy was repeated with five flow cells, and the loaded samples were sequenced simultaneously in a GridION sequencer for 48 h. In silico serotype prediction was performed using both SeqSero2 (for raw reads and genome assemblies) and SISTR (for genome assemblies) software suites. An average of 10.63 Gbp of clean sequencing data was obtained per flow cell. We found that the unevenness of data yield among each multiplexed isolate was a major barrier for shortening sequencing time. Using genome assemblies, both SeqSero2 and SISTR accurately predicted all the multiplexed isolates under each multiplexing strategy when depth of genome coverage ≥50× for each isolate. We identified that cross-sample barcode assignment was a major cause of prediction errors when raw sequencing data were used for prediction. This study also demonstrated that, (i) sequence data generated by ONT multiplex sequencing can be used to simultaneously predict serotype for three to ten Salmonella isolates, (ii) with three to ten Salmonella isolates multiplexed, genome coverage at ≥50× per isolate was obtained within an average of 6 h of ONT multiplex sequencing, and (iii) with five isolates multiplexed, the cost per isolate might be reduced to 23% of that incurred with single ONT sequencing. This study is a starting point for future validation of multiplex ONT WGS as a cost-efficient and rapid Salmonella confirmation and serotype classification tool for the food industry.


2021 ◽  
Author(s):  
Kim-Kee Tan ◽  
VunJia Tiong ◽  
Tan Jia-Yi ◽  
Jo-Ern Wong ◽  
Boon-Teong Teoh ◽  
...  

Abstract Various methods have been developed for rapid and high throughput full genome sequencing of SARS-CoV-2. Here, we described a protocol for targeted multiplex full genome sequencing of SARS-CoV-2 genomic RNA directly extracted from human nasopharyngeal swabs using the Ion Personal Genome Machine (PGM). This protocol involves concomitant amplification of 237 gene fragments encompassing the SARS-CoV-2 genome to increase the abundance and yield of viral specific sequencing reads. Five complete and one near-complete genome sequences of SARS-CoV-2 were generated with a single Ion PGM sequencing run. The sequence coverage analysis revealed two amplicons (positions 13751-13965 and 23941-24106), which consistently gave low sequencing read coverage in all isolates except 4Apr20-64-Hu. We analyzed the potential primer binding sites within these low covered regions and noted that the 4Apr20-64-Hu possess C at positions 13730 and 23929, whereas the other isolates possess T at these positions. The genetic variations observed suggest that the naturally occurring genome variations present in the actively circulating SARS-CoV-2 strains affected the performance of the target enrichment panel of the Ion AmpliSeq™ SARS‑CoV‑2 Research Panel. The possible impact of other genetic sequence variations warrants further investigation, and an improved version of the Ion AmpliSeq™ SARS‑CoV‑2 Research Panel, hence, should be considered.


2020 ◽  
Vol 2 (4) ◽  
Author(s):  
Xiaoxian Guo ◽  
Yiqin Wang ◽  
Ruoyu Zhang ◽  
Zhenglong Gu

Abstract Human mitochondrial genome (mtDNA) variations, such as mtDNA heteroplasmies (the co-existence of mutated and wild-type mtDNA), have received increasing attention in recent years for their clinical relevance to numerous diseases. But large-scale population studies of mtDNA heteroplasmies have been lagging due to the lack of a labor- and cost-effective method. Here, we present a novel human mtDNA sequencing method called STAMP (sequencing by targeted amplification of multiplex probes) for measuring mtDNA heteroplasmies and content in a streamlined workflow. We show that STAMP has high-mapping rates to mtDNA, deep coverage of unique reads and high tolerance to sequencing and polymerase chain reaction errors when applied to human samples. STAMP also has high sensitivity and low false positive rates in identifying artificial mtDNA variants at fractions as low as 0.5% in genomic DNA samples. We further extend STAMP, by including nuclear DNA-targeting probes, to enable assessment of relative mtDNA content in the same assay. The high cost-effectiveness of STAMP, along with the flexibility of using it for measuring various aspects of mtDNA variations, will accelerate the research of mtDNA heteroplasmies and content in large population cohorts, and in the context of human diseases and aging.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nan Wang ◽  
Yibing Yuan ◽  
Hui Wang ◽  
Diansi Yu ◽  
Yubo Liu ◽  
...  

Abstract Genotyping-by-Sequencing (GBS) is a low-cost, high-throughput genotyping method that relies on restriction enzymes to reduce genome complexity. GBS is being widely used for various genetic and breeding applications. In the present study, 2240 individuals from eight maize populations, including two association populations (AM), backcross first generation (BC1), BC1F2, F2, double haploid (DH), intermated B73 × Mo17 (IBM), and a recombinant inbred line (RIL) population, were genotyped using GBS. A total of 955,120 of raw data for SNPs was obtained for each individual, with an average genotyping error of 0.70%. The rate of missing genotypic data for these SNPs was related to the level of multiplex sequencing: ~ 25% missing data for 96-plex and ~ 55% for 384-plex. Imputation can greatly reduce the rate of missing genotypes to 12.65% and 3.72% for AM populations and bi-parental populations, respectively, although it increases total genotyping error. For analysis of genetic diversity and linkage mapping, unimputed data with a low rate of genotyping error is beneficial, whereas, for association mapping, imputed data would result in higher marker density and would improve map resolution. Because imputation does not influence the prediction accuracy, both unimputed and imputed data can be used for genomic prediction. In summary, GBS is a versatile and efficient SNP discovery approach for homozygous materials and can be effectively applied for various purposes in maize genetics and breeding.


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 758
Author(s):  
Taebum Lee ◽  
Hee Young Na ◽  
Sun-ju Byeon ◽  
Kyoung-Mee Kim ◽  
Hey Seung Lee ◽  
...  

Background: Fungal organisms are frequently observed in surgical pathological diagnosis. In order to more accurately identify fungi in formalin-fixed and paraffin-embedded (FFPE) tissues, it is necessary to use genomic information. The purpose of our pilot study is to identify the factors to be considered for the identification of pathogenic fungi using mycobiome analysis in FFPE tissues. Methods: We selected 49 cases in five hospitals. In each case, FFPE tissue was cut into 50 µm and DNA was extracted. Multiplex PCR with four primers (ITS1, ITS2, ITS3 and ITS4) was performed. Multiplex sequencing was performed using a MinION device according to the manufacturer’s protocol. Sequences of each case were searched using BLASTN with an ITS database from NCBI RefSeq Targeted Loci Project with default parameters. Results: A total of 2,526 DNA sequences were sequenced. We were able to identify 342 fungal sequences in 24 (49.0%, 24/49) cases. The median number of detected fungal sequences per case was 3 (1Q: 1 and 3Q: 14.25). Of the fungal DNA sequences, 215 (62.87%) contained the entire region of ITS1 or ITS2. The remaining 127 fungal DNA sequences were identified as fungi using a partial sequence of ITS1, ITS2, 5.8S, LSU or SSU. Conclusion: In conclusion, we have identified the possibility of finding pathogenic fungi through mycobiome analysis in fungal infected FFPE tissues using nanopore sequencing. However, we have also found several limitations to be solved for further studies. If we develop a method to characterize pathogenic fungi in FFPE tissues in a follow-up study, we think it will help patients to use appropriate antifungal agents.


2020 ◽  
Author(s):  
Xiaoxian Guo ◽  
Yiqin Wang ◽  
Ruoyu Zhang ◽  
Zhenglong Gu

ABSTRACTHuman mitochondrial genome (mtDNA) variations, such as mtDNA heteroplasmies (the co-existence of mutated and wild-type mtDNA), have received increasing attention in recent years for their clinical relevance to numerous diseases. But large-scale population studies of mtDNA heteroplasmies have been lagging due to the lack of a labor- and cost-effective method. Here, we present a novel human mtDNA sequencing method called STAMP (sequencing by targeted amplification of multiplex probes) for measuring mtDNA heteroplasmies and content in a streamlined workflow. We show that STAMP has high mapping rates to mtDNA, deep coverage of unique reads, and high tolerance to sequencing and PCR errors when applied to human samples. STAMP also has high sensitivity and low false positive rates in identifying artificial mtDNA variants at fractions as low as 0.5% in genomic DNA samples. We further extend STAMP, by including nuclear DNA-targeting probes, to enable assessment of relative mtDNA content in the same assay. The high cost-effectiveness of STAMP, along with the flexibility of using it for measuring various aspects of mtDNA variations, will accelerate the research of mtDNA heteroplasmies and content in large population cohorts, and in the context of human diseases and aging.


2020 ◽  
Author(s):  
Taebum Lee ◽  
Hee Young Na ◽  
Kyoung-Mee Kim ◽  
Hey Seung Lee ◽  
Sung-Hye Park ◽  
...  

ABSTRACTBackgroundFungal organisms are frequently observed in surgical pathological diagnosis. In order to more accurately identify fungi in formalin-fixed and paraffin-embedded (FFPE) tissues, it is necessary to use genomic information. The purpose of our pilot study is to identify the factors to be considered for the identification of pathogenic fungi using mycobiome analysis in FFPE tissues.MethodsWe selected 49 cases in five hospitals. In each case, FFPE tissue was cut into 50 µm and DNA was extracted. Multiplex PCR with four primers (ITS1, ITS2, ITS3 and ITS4) was performed. Multiplex sequencing was performed using MinION device according to the manufacturer’s protocol. Sequences of each case were searched using BLASTN with an ITS database from NCBI RefSeq Targeted Loci Project with default parameter.ResultsA total of 2,526 DNA nucleotides were sequenced. We were able to identify 342 fungal nucleotides in 24 (49.0%, 24/49) cases. The median value of the detected fungal DNA per case was 3 (1Q: 1 and 3Q: 14.25). The 215 (62.87%) fungal DNA contained the entire region of ITS1 or ITS2. The remaining 127 fungal DNAs were identified as fungi using partial sequence of ITS1, ITS2, 5.8S, LSU or SSU.ConclusionIn conclusion, we have identified the possibility of finding pathogenic fungi through mycobiome analysis in fungal infected FFPE tissues using nanopore sequencing method. However, we have also found several limitations to be solved for further studies. If we develop a method to characterize pathogenic fungi in FFPE tissues in a follow-up study, we think it will help patients to use appropriate antifungal agents.


Sign in / Sign up

Export Citation Format

Share Document