hydroponic cultures
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 1)

Nitrogen ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 491-505
Author(s):  
László Kupcsik ◽  
Claudia Chiodi ◽  
Taraka Ramji Moturu ◽  
Hugues De Gernier ◽  
Loïc Haelterman ◽  
...  

The worldwide demand for vegetable oils is rising. Oilseed rape (Brassica napus) diversifies cereal dominated crop rotations but requires important nitrogen input. Yet, the root organ is offering an untapped opportunity to improve the nitrogen capture in soil. This study evaluates three culture systems in controlled environment, to observe root morphology and to identify root attributes for superior biomass production and nitrogen use. The phenotypic diversity in a panel of 55 modern winter oilseed rape cultivars was screened in response to two divergent nitrate supplies. Upon in vitro and hydroponic cultures, a large variability for root morphologies was observed. Root biomass and morphological traits positively correlated with shoot biomass or leaf area. The activities of high-affinity nitrate transport systems correlated negatively with the leaf area, while the combined high- and low-affinity systems positively with the total root length. The X-ray computed tomography permitted to visualize the root system in pipes filled with soil. The in vitro root phenotype at germination stage was indicative of lateral root deployment in soil-grown plants. This study highlights great genetic potential in oilseed rape, which could be manipulated to optimize crop root characteristics and nitrogen capture with substantial implications for agricultural production.


2021 ◽  
pp. 100107
Author(s):  
Mārtiņs Kalniņš ◽  
Una Andersone-Ozola ◽  
Dita Gudrā ◽  
Alise Sieriņa ◽  
Dāvids Fridmanis ◽  
...  

2021 ◽  
Author(s):  
Daisei Ueno ◽  
Yuta Ito ◽  
Miho Ohnishi ◽  
Chikahiro Miyake ◽  
Takayuki Sohtome ◽  
...  

Abstract Purpose Phytosiderophores (PS) from grasses solubilize sparingly soluble iron (Fe), and the resultant PS-Fe is an Fe source even for dicots. Recently, the synthetic PS proline-2′-deoxymugineic acid (PDMA) has been developed as a moderately biodegradable Fe fertilizer for grasses. We aimed to investigate whether PDMA-Fe is also a good Fe source for dicots. Methods The availability of PDMA-Fe to cucumber was evaluated in a calcareous substrate and hydroponic cultures at pH 7.0–9.0 by determining chlorophyll level, PSII activity, and Fe uptake. EDDHA-Fe, EDTA-Fe, and citrate-Fe were used as controls. The reducibility of Fe chelates by roots was measured to determine the mechanism underlying differences in availability. Expressions of Fe deficiency-inducible genes were analyzed to estimate the Fe status in plants. Results The application of PDMA-Fe and EDDHA-Fe to a calcareous substrate reduced Fe-deficient chlorosis to a similar extent; however, the shoot Fe concentration was higher in the PDMA-Fe treatment. In the hydroponic culture, the availability of PDMA-Fe was higher than that of the other chelates at all pH levels, and this was confirmed by higher PSII activity and lower expression of Fe deficiency-inducible genes. The reducibility assay revealed that the reduction level of PDMA-Fe was greater than that of EDTA-Fe and citrate-Fe under alkaline pH. Conclusions PDMA-Fe is utilized by cucumber roots more efficiently than traditional synthetic chelates in both calcareous substrate and hydroponic cultures. The higher availability of PDMA-Fe may be attributed to its higher reducibility. Our findings suggest that PDMA-Fe could be a good Fe fertilizer for dicots.


2021 ◽  
pp. 63-70
Author(s):  
R. Camacho-Arévalo ◽  
E. Eymar ◽  
A. Gómez ◽  
B. Mayans ◽  
R. Antón-Herrero ◽  
...  
Keyword(s):  

2021 ◽  
Vol 12 ◽  
Author(s):  
Raquel Carmona ◽  
Rocío Muñoz ◽  
F. Xavier Niell

In Southern European estuaries and associated salt marshes, the anthropogenic nutrient inputs, together with longer drought periods, are leading to increasing eutrophication and salinization of these coastal ecosystems. In this study, uptake kinetics of ammonium, nitrate, and phosphate by three common plants in Palmones salt marsh (Southern Spain), Sarcocornia perennis ssp. alpini, Atriplex portulacoides, and Arthrocnemum macrostachyum were measured in hydroponic cultures. We also determined how these uptakes could be modified by increasing salinity, adding NaCl to the incubation medium (from 170 to 1,025 mM). Kinetic parameters are analyzed to understand the competition of the three species for nutrient resources under realistic most frequent concentrations in the salt marsh. These results may also be useful to predict the possible changes in the community composition and distribution if trends in environmental changes persist. Atriplex portulacoides showed the highest Vmax for ammonium, the most abundant nutrient in the salt marsh, while the highest affinity for this nutrient was observed in A. macrostachyum. Maximum uptake rates for nitrate were much lower than for ammonium, without significant differences among species. The highest Vmax value for phosphate was observed in A. macrostachyum, whereas A. portulacoides presented the highest affinity for this nutrient. High salinity drastically affected the physiological response of these species, decreasing nutrient uptake. Sarcocornia perennis ssp. alpini and A. macrostachyum were not affected by salinity up to 510 mM NaCl, whereas A. portulacoides notably decreased its uptake capacity at 427 mM and even withered at 1,025 mM NaCl. At current most frequent concentrations of ammonium and phosphate in the salt marsh, S. perennis ssp. alpini is the most favored species, from the nutritional point of view. However, A. portulacoides could enhance its presence if the increasing ammonium load continues, although a simultaneous salinization would negatively affect its nutritional physiology.


2021 ◽  
Author(s):  
Daisei Ueno ◽  
Yuta Ito ◽  
Miho Ohnishi ◽  
Chikahiro Miyake ◽  
Takayuki Sohtome ◽  
...  

Abstract Purpose: Phytosiderophores (PS) from grasses solubilize sparingly soluble iron (Fe), and the resultant PS-Fe is an Fe source, even for dicots. Recently, the synthetic PS proline-2′-deoxymugineic acid (PDMA) has been developed as a moderately biodegradable Fe fertilizer for grasses. We aimed to investigate whether PDMA-Fe is also a good Fe source for dicots.Methods: The availability of PDMA-Fe to cucumber was evaluated in calcareous soil and hydroponic cultures under pH 7.0–9.0 by determining chlorophyll concentration, PSII activity, and Fe uptake. EDDHA-Fe, EDTA-Fe, and citrate-Fe were used as controls. The reducibility of Fe chelates by roots was measured to determine the mechanism underlying differences in availability. Expressions of Fe deficiency-inducible genes (CsFRO1 and CsIRT1) were analyzed to estimate the Fe status in plants. Results: Application of PDMA-Fe and EDDHA-Fe to calcareous soil reduced Fe-deficient chlorosis to a similar extent; however, shoot Fe concentration was higher in the PDMA-Fe treatment. In the hydroponic culture, PDMA-Fe had higher availability than the other chelates at every pH, which was confirmed by higher PSII activity and lower expression of Fe deficiency-inducible genes. The reducibility assay revealed that the reduction level of PDMA-Fe was greater than that of EDTA-Fe and citrate-Fe under alkaline pH.Conclusion: PDMA-Fe is utilized by cucumber roots more efficiently than traditional synthetic chelates in both calcareous soil and hydroponic cultures. The higher availability of PDMA-Fe may be attributed to its higher reducibility. Our findings suggest that PDMA-Fe could be a good Fe fertilizer for dicots.


Agriculture ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 487
Author(s):  
Euro Pannacci ◽  
Daniele Del Buono ◽  
Maria Luce Bartucca ◽  
Luigi Nasini ◽  
Primo Proietti ◽  
...  

The ability of tall fescue (Festuca arundinacea L.) and orchardgrass (Dactylis glomerata L.), to remediate leachates polluted with S-metolachlor (SMR) has been assessed in static hydroponic cultures. Different SMR concentrations (0.25, 1.00, and 2.00 mg L−1) were applied in the growth media to test the capacity of the two grasses to tolerate and uptake this herbicide, and to regrowth after mowing. S-metolachlor did not severely affect the dry weight aerial biomass of D. glomerata and F. arundinacea, which were reduced by 5% and 10%, respectively, when compared to the untreated control, regardless of the SMR concentrations in the leachate. The regrowth ability of aerial biomass after mowing was reduced at the different SMR concentrations, according to a dose–response model. The SMR concentrations, which reduced the regrowth ability of F. arundinacea and D. glomerata of 10% and 30%, were found to be EC10 (Effective Concentration) of 0.21 and 0.38 mg L−1 and EC30 of 0.45 and 0.74 mg L−1, respectively. These values could be assumed as the SMR concentrations that were well tolerated by both the species, without compromising their aerial biomass regrowth. Finally, tall fescue was found to be more effective and faster than orchardgrass in decreasing the SMR in the leachate and, therefore, this species should be preferred to be used in the vegetative buffer strips (VBS).


2020 ◽  
Vol 33 (8) ◽  
pp. 1040-1045
Author(s):  
Consolación Álvarez ◽  
José A. Navarro ◽  
Fernando P. Molina-Heredia ◽  
Vicente Mariscal

Cyanobacteria are phototrophic microorganisms able to establish nitrogen-fixing symbiotic associations with representatives of all four of the major phylogenetic divisions of terrestrial plants. Despite increasing knowledge on the beneficial effects of cyanobacteria in rice fields, the information about the interaction between these microorganisms and rice at the molecular and structural levels is still limited. We have used the model nitrogen-fixing cyanobacterium Nostoc punctiforme to promote a long-term stable endophytic association with rice. Inoculation with this strain of hydroponic cultures of rice produces a fast adherence of the cyanobacterium to rice roots. At longer times, cyanobacterial growth in the proximity of the roots increased until reaching a plateau. This latter phase coincides with the intracellular colonization of the root epidermis and exodermis. Structural analysis of the roots revealed that the cyanobacterium use an apoplastic route to colonize the plant cells. Moreover, plant roots inoculated with N. punctiforme show both the presence of heterocysts and nitrogenase activity, resulting in the promotion of plant growth under nitrogen deficiency, thus providing benefits for the plant.


Sign in / Sign up

Export Citation Format

Share Document