scholarly journals Azotochelin and N-dihydroxy-N,N’-diisopropylhexanediamide as Fe sources to cucumber plants in hydroponic cultures

Author(s):  
Joao Graca Martins ◽  
Clara Martin, Lourdes Apaolaza ◽  
Maria Teresa Barros ◽  
Helena Maria Vieira Monteiro Soares ◽  
Juan Jose Lucena

Environmental concerns related to the use of synthetic iron chelates, usually non-biodegradable, for overcoming iron chlorosis motivates the search for alternative compounds. Thus, the main aim of this work was to evaluate siderophore, azotochelin, and a siderophore mimic, N-dihydroxy-N,N’-diisopropylhexanediamide (DPH) as potential sources of iron to cucumber plants grown in hydroponic cultures. The behavior of the iron chelates of azotochelin and DPH, as a substrate of ferric chelate reductase (FCR) and the ability as iron suppliers for chlorotic plants was studied and compared with o,o-EDDHA/Fe3+ and EDTA/Fe3+ chelates, traditionally used for this purpose. The rate of reduction of DPH/Fe3+, by FCR, was comparable to o,o-EDDHA/Fe3+ but lesser than the obtained for EDTA/Fe+3. The rate of reduction for azotochelin/Fe3+ was not possible to determine. Both azotochelin/Fe3+ and DPH/Fe3+ chelates were effective in supplying iron to cucumber plants. After 7 and 21 days, all the plants treated with the iron chelates (10 µM, Fe) of DPH and azotochelin showed significantly higher SPAD index, leaf dry weight and leaf Fe concentration than the control plants (2µM, Fe). In conclusion, azotochelin/Fe3+ and DPH/Fe3+ can be considered as iron sources for cucumber plants when growing in hydroponic culture.

2018 ◽  
Vol 7 (1) ◽  
pp. 28
Author(s):  
Yetti Elidar

Research on the response of roots of palm sugar palm seeds (Arenga pinnata) in nurseries at doses and intervals of Nasa liquid organic fertilizer. Aims to determine the dosage, interval and combination of dosages and fertilization intervals with Nasa liquid organic fertilizer which can provide the best dry weight of the roots in the nursery. The research design used was a Completely Randomized Design (CRD) with 3x3 factorial experiments and each treatment was repeated 8 (eight) times, consisting of: the first factor was the treatment of POC Nasa dose in a concentration of 3 cc POC Nasa per liter of water (D) consists of 3 levels, namely: d1 = 300 ml POC Nasa, d2 = 400 ml POC Nasa, d3 = 500 ml POC Nasa, while the second factor is the treatment of POC Nasa Interval (I) consisting of 3 levels, namely: i1 = 2 once a week, i2 = once every 3 weeks, i3 = once every 4 weeks. The results of the POC Nasa dose study had a significant effect on leaf wet weight, leaf dry weight, root wet weight and root dry weight. The best dose at this level are: d2 (400 ml of Nasa liquid organic fertilizer), the interval of liquid organic fertilizer Nasa has a significant effect on leaf wet weight, leaf dry weight, root wet weight and root dry weight. The best dose at this level is: i1 (once every 2 weeks). The treatment combination has no significant effect on all parameters. 


Weed Science ◽  
1979 ◽  
Vol 27 (3) ◽  
pp. 278-279 ◽  
Author(s):  
W. S. Hardcastle

Twenty-eight commercial soybean [Glycine max(L.) Merr.] cultivars of maturity classes V through VIII were evaluated for differences in response to metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] 0.125 ppm w/w in hydroponic culture. Top dry weight (TDW) of treated ‘FFR 666’ soybeans equaled that of the cultivar check and five other cultivars were not significantly different (P = 5%). ‘Semmes' was most sensitive to the herbicide with TDW 40% of cultivar check. ‘Tracy’ and ‘Coker 156’ were not significantly different (P = 5%) from Semmes. The other cultivars tested were intermediate in response to metribuzin.


1982 ◽  
Vol 12 (1) ◽  
pp. 40-51 ◽  
Author(s):  
Nancy L. Ostman ◽  
George T. Weaver

Retranslocation from leaves was investigated as a means of retaining nutrients in stands of Quercusprinus L. on two sites in southern Illinois, where wind rapidly moves litter downslope. Foliage samples were collected from late summer until leaf fall to describe the trends of leaf dry weight and nutrient concentration (N, K, P, Ca) changes. Free-falling rain and throughfall were collected to estimate foliar leaching. Foliar concentrations of N, K, and P decreased markedly during senescence while Ca concentrations increased. The pattern of concentration change was unique for each element, and the change in N concentration was closely correlated with change in leaf color. For the study sites as a whole, leaf dry weight decreased to 70% of the original value. Of 84.2 kg N/ha in green foliage, only 22.6% was returned to the site as litter. The canopy gained 0.3 kg N/ha (0.4%) from rainfall. The 78.5% N unaccounted for is attributed to retranslocation. Similarly, from 51.4 kg K/ha; 8.2, P; and 47.8, Ca in green foliage, 9.8, 1.3, and 3.3%, respectively, were removed by leaching; 27.4, 43.7, and 85.1% were returned to the site in litter. The remaining 63.0% K, 55.0% P, and 11.5% Ca unaccounted for is attributed to retranslocation. Retranslocation and leaching of nutrients was greater on the site of higher quality. But on both sites it appears that retranslocation is an important means of retaining and conserving N, K, and P countering the effect of annual litter removal.


1996 ◽  
Vol 26 (4) ◽  
pp. 649-657 ◽  
Author(s):  
M.S. Günthardt-Goerg ◽  
P. Schmutz ◽  
R. Matyssek ◽  
J.B. Bucher

Although increasing tropospheric ozone (O3) concentrations as well as precursor NO2 emissions and N deposition have been observed, the combination of their effects on deciduous trees is little understood. We therefore examined the growth and leaf injury response of a model tree (Populus ×euramericana (Dode) Guinier cuttings exposed before flush and until they reached a height of more than 1 m) to low and high soil N supply (105 or 315 mg N•L−1 substrate volume), to filtered air, and to filtered air with NO2 (sinusoidal daily course with a mean of 100 nL•L−1), with O3 (60 nL•L−1), or with a combination of both in climate-controlled chambers. High soil N increased total plant dry weight, leaf area, and xylem radius in plants fumigated with or without added NO2 or O3. The number of leaves increased with high soil N independent of added NO2. The stomatal density was influenced by soil N and by fumigations, but the appearance of leaf injury symptoms, leaf loss, specific leaf weight, and bark radius were not modified by the soil N regimes. NO2 alone, though applied in a sixfold ambient concentration, did not significantly increase plant growth. NO2 and O3 alone had opposite effects on specific leaf dry weight, stomatal density, and in the high fertilization regime, on the bark radius. The decrease in specific leaf dry weight and the appearance of early leaf symptoms were enhanced by NO2 added to O3. Visible leaf injury caused by O3 increased in parallel with microscopic changes in mesophyll cell walls, in the starch and protein patterns of mesophyll cells, in the bark cell content, and in the phloem sieve pores. NO2 enhanced the negative effect of O3 rather than compensated for a low soil N supply.


2020 ◽  
pp. 147-159
Author(s):  
Thangavelu Muthukumar ◽  
Selvam Dinesh-Babu

Investigamos el efecto de varias concentraciones (0,0-5,0 ppm) de cadmio (Cd) en la capacidad de regeneración; las características morfológicas y la acumulación de Cd en los esquejes de tallo de la verdura de hoja Talinum portulacifolium cultivada en cultivo hidropónico. El Cd retrasó la brotación de los esquejes en un 7%, la callosidad en un 8% y el enraizamiento en un 38%. Las diferentes concentraciones de Cd afectaron significativamente a los pesos fresco y seco de las partes de la planta, excepto las raíces. La acumulación de Cd fue mayor en los tallos que en las hojas (2,22 vs 0,57 ppm). El índice de tolerancia calculado osciló entre el 59% y el 88%. Basándose en las observaciones, se concluyó que el Cd interfiere con la regeneración de los esquejes de tallo de T. portulacifolium e implica preocupación sobre el consumo y el uso terapéutico de esta hortaliza de hoja que crece en suelos contaminados. We investigated the effect of various concentrations (0.0-5.0 ppm) of cadmium (Cd) on the regeneration ability; morphological characteristics and Cd accumulation in the leafy vegetable Talinum portulacifolium stem cuttings grown in hydroponic culture. Cd delayed sprouting of stem cuttings by 7%, callusing by 8% and rooting by 38%. Different Cd concentrations significantly affected fresh and dry weight of plant parts except roots. Accumulation of Cd was more in the stems than in leaves (2.22 vs 0.57 ppm). The calculated tolerance index ranged from 59% to 88%. Based on the observations it was concluded that Cd interferes with the regeneration of T. portulacifolium stem cuttings and imply concerns on the consumption and therapeutic use of this leafy vegetable growing on polluted soils.


2000 ◽  
Vol 51 (6) ◽  
pp. 701 ◽  
Author(s):  
C. L. Davies ◽  
D. W. Turner ◽  
M. Dracup

We studied the adaptation of narrow-leafed lupin (Lupinus angustifolius) and yellow lupin (L. luteus) to waterlogging because yellow lupin may have potential as a new legume crop for coarse-textured, acidic, waterlogging-prone areas in Western Australia. In a controlled environment, plants were waterlogged for 14 days at 28 or 56 days after sowing (DAS). Plants were more sensitive when waterlogged from 56 to 70 DAS than from 28 to 42 DAS, root growth was more sensitive than shoot growth, and leaf expansion was more sensitive than leaf dry weight accumulation. Waterlogging reduced the growth of narrow-leafed lupin (60–81%) more than that of yellow lupin (25–56%) and the response was more pronounced 2 weeks after waterlogging ceased than at the end of waterlogging. Waterlogging arrested net root growth in narrow-leafed lupin but not in yellow lupin, so that after 2 weeks of recovery the root dry weight of yellow lupin was the same as that of the control plants but in narrow-leafed lupin it was 62% less than the corresponding control plants. Both species produced equal amounts of hypocotyl root when waterlogged from 28 to 42 DAS but yellow lupin produced much greater amounts than narrow-leafed lupin when waterlogged from 56 to 70 DAS.


Weed Science ◽  
1985 ◽  
Vol 33 (6) ◽  
pp. 751-754 ◽  
Author(s):  
M. J. Cañal Villanueva ◽  
B. Fernandez Muñiz ◽  
R. Sanchez Tames

Growth and the chlorophyll and carotenoid contents were measured in greenhouse-grown yellow nutsedge (Cyperus esculentusL. ♯ CYPES), following treatment with glyphosate [N-(phosphonomethyl)glycine]. Herbicide was applied as a foliar spray at concentrations of 0.1, 1.0, 5.0, and 10.0 mM. After 2 weeks, growth was inhibited, and chlorosis and leaf apex necrosis were observed. Plant height was reduced, leaf fresh weight was decreased by 40%, and leaf dry weight was slightly affected. Rhizome, tuber, and secondary shoot formation was strongly inhibited, but root development was not affected by glyphosate treatment. With the 10-mM treatment, dry weight of the underground system was reduced by 80%. Chlorophyll and carotenoid levels were decreased by 52 and 54%, respectively, following glyphosate treatment.


Sensors ◽  
2020 ◽  
Vol 20 (22) ◽  
pp. 6501
Author(s):  
Mohammad Ajlouni ◽  
Audrey Kruse ◽  
Jorge A. Condori-Apfata ◽  
Maria Valderrama Valencia ◽  
Chris Hoagland ◽  
...  

Crop growth analysis is used for the assessment of crop yield potential and stress tolerance. Capturing continuous plant growth has been a goal since the early 20th century; however, this requires a large number of replicates and multiple destructive measurements. The use of machine vision techniques holds promise as a fast, reliable, and non-destructive method to analyze crop growth based on surrogates for plant traits and growth parameters. We used machine vision to infer plant size along with destructive measurements at multiple time points to analyze growth parameters of spring wheat genotypes. We measured side-projected area by machine vision and RGB imaging. Three traits, i.e., biomass (BIO), leaf dry weight (LDW), and leaf area (LA), were measured using low-throughput techniques. However, RGB imaging was used to produce side projected area (SPA) as the high throughput trait. Significant effects of time point and genotype on BIO, LDW, LA, and SPA were observed. SPA was a robust predictor of leaf area, leaf dry weight, and biomass. Relative growth rate estimated using SPA was a robust predictor of the relative growth rate measured using biomass and leaf dry weight. Large numbers of entries can be assessed by this method for genetic mapping projects to produce a continuous growth curve with fewer replicates.


Pastura ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 33
Author(s):  
Roni N.G.K. ◽  
S.A. Lindawati

The productivity of forage depends on the availability of nutrients in the soil where it is grown, so fertilization to replace harvested produce is absolutely necessary. This study aims to study the response of gamal and indigofera forage on application of inorganic and organic fertilizers. Research using a completely randomized design factorial pattern of two factors, the first factor is the type of plant (G = Gamal; I = Indigofera) and the second factor is the type of fertilizer (T = without Fertilizer; A = Inorganic fertilizer NPK; K = commercial organic fertilizer; O = conventional organic fertilizer; B = bioorganic fertilizer), repeated 4 times so that it consists of 40 experimental units. The variables observed were plant height, number of leaves, stem diameter, leaf dry weight, stem dry weight, total dry weight of leaves, ratio of dry weight of leaves/stems and leaf area per pot. The results showed that there was no interaction between plant species and types of fertilizer in influencing the response of gamal and indigofera plants. Plant species have a significant effect on stem diameter, while fertilizer types have a significant effect on plant height, leaf dry weight, total dry weight of leaves and leaf area per pot. Based on the results of the study it can be concluded that the response of gamal plants is similar to indigofera, all types of fertilizers can improve the response of plants and organic fertilizers produce the same crop response with inorganic fertilizers. Keywords: gamal, indigofera, inorganic fertilizer, organic fertilizer


2018 ◽  
Vol 15 (2) ◽  
pp. 40-51
Author(s):  
M A Hossain ◽  
M A Hasan ◽  
S Sikder ◽  
A K M M B Chowdhury

An experiment was carried out to evaluate the leaf characteristics and yield performances of mungbean (Vigna radiata L.) under different light levels at the Crop Physiology and Ecology Research Field of Hajee Mohammad Danesh Science and Technology University, Dinajpur during March to June 2016. The experiment was laid out in a split plot design with three replications. Three light levels (L100 - 100 % light intensity, L75- 75 % light intensity and L50- 50% light intensity) were assigned in the main plots and four varieties (BARl Mung-6, BINA Mung-8, BINA Mung-5 and BU Mug-4) were assigned in subplots. Mosquito nets of different pore size were used for maintaining 75 and 50 percent light intensity. Leaf area was increased due to reduced light levels in all mugbean varieties but the increment was significant in BINA Mung-5 and BINA Mung-8 only at 75% light intensity at 40 days after sowing and only in BARI Mung-6 with L50 and BU Mug-4 with L75 and L50at 50 days after sowing. Due to reduced light levels, leaf dry weight was affected more in BINA Mung-5 and BU Mug- 4 than BARI Mung-6 and BINA Mung-8. Leaf thickness was reduced under shade in all the mungbean varieties, except in BU Mug-4 at 75% light intensity, and the reduction in leaf thickness was mainly due to the reduction in thickness of spongy layer. The palisade layer thickness was influenced insignificantly but spongy layer thickness was increased in BINA Mung-5 at 100% light intensity. The grain yields (t ha-1) of BARI Mung-6 and BINA Mung-8 remained stable under partial shade condition but the grain yield of BINA Mung-5 and BU Mug-4 was reduced drastically under partial shade condition. Higher leaf dry weight, number of pods plant-1, seeds pod-1, and heavier grains in BARI Mung-6 and BINA Mung-8 contributed to the higher grain yield plant-1 under partial shade condition than in BINA Mung-5 and BU Mug-4.The Agriculturists 2017; 15(2) 40-51


Sign in / Sign up

Export Citation Format

Share Document