Activation of mucosal immunity and novel prophylactic and therapeutic strategy in combating COVID-19

Author(s):  
Swapan K. Chatterjee ◽  
Snigdha Saha ◽  
Maria Nilda M. Munoz

Coronavirus disease 2019 (COVID-19) emerges as an expeditiously growing pandemic, in the human population caused by the highly transmissible RNA virus severe acute respiratory syndrome of coronavirus 2 (SARS-CoV-2). Prognosis of SARS-CoV-2 infection predominantly occurs at the angiotensin-converting enzyme 2 receptor and transmembrane protease serine type 2 positive (ACE2 + TMPRSS2)+ epithelial cells of the mucosal surface like nasal, oral mucosae, and/or the conjunctival surface of the eye where it has interacted along with the immune system. The primary host response towards the pathogen starts from an immune microenvironment of nasopharynx-associated lymphoid tissue (NALT) and mucosa-associated lymphoid tissue (MALT). The presence of exhausted lymphocytes, lymphopenia, pneumonia and cytokine storm is the hallmark of COVID-19. The multifaceted nature of co-morbidity factors like obesity and type 2 diabetes and its effects on immunity can alter the pathogenesis of SARS-CoV-2 infection. Adipose tissue is a crucial endocrine organ that secretes a plethora of factors like adipokines, cytokines, and chemokines that have a profound impact on metabolism and augments the expression of mucosal pro-inflammatory cytokines, like tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), and the interleukin-12 (IL-12)/IL-23. Mucosal immunization could be a superior approach to activate mucosal and systemic immune responses against pathogenic invasion at mucosal surface entry ports. Mucosal vaccines are also able to generate strong systemic humoral immunity—required to neutralize any virus particle that dodges the primary immune response. To develop an efficient vaccine against mucosal pathogens, considering the designing of the delivery route, immunomodulatory features, and adjuvants are very important. In this article, we further provide evidence to understand the significant role of mucosal immunity, along with secretory and circulating immunoglobulin A (IgA) antibodies in generating a novel mucosal vaccine against COVID-19. Moreover, along with mucosal vaccines, we should look for combination treatment strategies with plant bioactive molecules. Glycan-binding lectins against viral proteins for targeted activation of mucosal immune response are one of such examples. This might play a promising role to halt this emerging virus.

Author(s):  
Loreto Gesualdo ◽  
Vincenzo Di Leo ◽  
Rosanna Coppo

Abstract The precise pathogenesis of immunoglobulin A nephropathy (IgAN) is still not clearly established but emerging evidence confirms a pivotal role for mucosal immunity. This review focuses on the key role of mucosa-associated lymphoid tissue (MALT) in promoting the onset of the disease, underlying the relationship among microbiota, genetic factors, food antigen, infections, and mucosal immune response. Finally, we evaluate potential therapies targeting microbes and mucosa hyperresponsiveness in IgAN patients.


2000 ◽  
Vol 68 (12) ◽  
pp. 6946-6953 ◽  
Author(s):  
Julia Wakeham ◽  
Jun Wang ◽  
Zhou Xing

ABSTRACT The current study was designed to investigate the impact of genetic heterogeneity on host immune responses to pulmonary intracellular infection by using two mouse strains of distinct genetic background, C57BL/6 and BALB/c mice, and a model intracellular pathogen,Mycobacterium bovis BCG. Upon infection, compared to C57BL/6 mice, BALB/c mice developed an earlier response of interleukin 12 (IL-12), gamma interferon (IFN-γ), tumor necrosis factor alpha, and macrophage chemoattractive protein 1, and greater neutrophilic influx to the lung by days 7 and 14. However, the level of these cytokines at days 27, 43, and 71 was much lower in BALB/c mice than in C57BL/6 mice. The magnitude of cellular responses was also much lower in the lung of BALB/c mice around day 27. Histologically, while C57BL/6 mice developed lymphocytic granulomas, BALB/c mice displayed atypical granulomas in the lung. Of importance, the level of type 2 cytokines IL-4 and IL-10 remained low and similar in the lung of both C57BL/6 and BALB/c mice throughout. Furthermore, lymphocytes isolated from systemic and local lymphoid tissues of infected BALB/c mice demonstrated a markedly lower antigen-specific IFN-γ recall response. While the number of mycobacterial bacilli recovered from both the lung and spleen of BALB/c mice was similar to that in C57BL/6 mice at day 14, it was higher than that in C57BL/6 mice at day 43. However, it was eventually leveled off to that in C57BL/6 counterparts later. These results suggest the following: (i) genetic heterogeneity can lead to differential innate and adaptive cell-mediated immune responses to primary pulmonary mycobacterial infection; (ii) it is the level of adaptive, but not innate, immune response that is critical to host resistance; and (iii) a lower type 1 immune response in BALB/c mice is not accompanied by a heightened type 2 response during pulmonary mycobacterial infection.


2003 ◽  
Vol 71 (1) ◽  
pp. 465-473 ◽  
Author(s):  
Francesca Sisto ◽  
Annarita Miluzio ◽  
Orazio Leopardi ◽  
Maurizio Mirra ◽  
Johan R. Boelaert ◽  
...  

ABSTRACT Penicillium marneffei is an intracellular opportunistic fungus causing invasive mycosis in AIDS patients. T cells and macrophages are important for protection in vivo. However, the role of T-cell cytokines in the immune response against P. marneffei is still unknown. We studied by semiquantitative reverse transcription-PCR and biological assays the patterns of expression of Th1 and Th2 cytokines in the organs of wild-type (wt) and gamma interferon (IFN-γ) knockout (GKO) mice infected intravenously with P. marneffei conidia. At 3 × 105 conidia/mouse, a self-limiting infection developed in wt BALB/c mice, whereas all GKO mice died at day 18 postinoculation. Splenic and hepatic granulomas were present in wt mice, whereas disorganized masses of macrophages and yeast cells were detected in GKO mice. The infection resolved faster in the spleens than in the livers of wt mice and was associated with the local expression of type 1 cytokines (high levels of interleukin-12 [IL-12] and IFN-γ) but not type 2 cytokines (low levels of IL-4 and IL-10). Conversely, both type 1 and type 2 cytokines were detected in the livers of wt animals. Disregulation of the cytokine profile was seen in the spleens but not in the livers of GKO mice. The inducible nitric oxide synthase mRNA level was low and the TNF-α level was high in both spleens and livers of GKO mice compared to wt mice. These data suggest that the polarization of a protective type 1 immune response against P. marneffei is regulated at the level of individual organs and that the absence of IFN-γ is crucial for the activation of fungicidal macrophages and the development of granulomas.


1999 ◽  
Vol 67 (9) ◽  
pp. 4570-4577 ◽  
Author(s):  
Yiguang Chen ◽  
Dov L. Boros

ABSTRACT In schistosomiasis mansoni, helminth eggs secrete soluble egg antigens (SEA) that induce T-cell-mediated granulomatous tissue responses. The cloned 38-kDa peptide (p38) of SEA was shown to induce and elicit Th1-type responsiveness in H-2k mice. Subsequently, the immunodominant T-cell epitope (P4) of p38 was shown to elicit pulmonary granuloma formation and Th1-type cytokine production in sensitized or infected mice. Here, we report that the immune response to p38 or P4 can be polarized to a Th1 or Th2 profile when the peptides are presented intraperitoneally in soluble recombinant interleukin-12 (IL-12) or alum adjuvant, respectively. The Th1 or Th2 profile was verified by cytokine secretion, enzyme-linked spot assay, and antibody isotype characterization. Importantly, the polarized immune response generated two types of pulmonary granulomas around injected P4-coated beads. The type 1 granulomas were smaller and contained mononuclear cells and occasional thin strands of deposited collagen. In contrast, the type 2 lesions were larger and contained mononuclear cells, large numbers of eosinophils, and several thick bands of deposited collagen. By reverse transcription-PCR cytokine, message in the type 1 granuloma-bearing lungs was found for gamma interferon, tumor necrosis factor alpha, and inducible nitric oxide synthase but not for IL-4 or IL-5. Conversely, lungs with type 2 granulomas had message only for IL-4 and IL-5. These results show that in the proper cytokine environment, the response to a strong Th1 inducer peptide can be deviated to a Th2 profile.


2010 ◽  
Vol 69 (4) ◽  
pp. 644-650 ◽  
Author(s):  
Roxana Valdés-Ramos ◽  
Beatriz E. Martínez-Carrillo ◽  
Irma I. Aranda-González ◽  
Ana Laura Guadarrama ◽  
Rosa Virgen Pardo-Morales ◽  
...  

Diet and exercise are primary strategies recommended for the control of the obesity epidemic. Considerable attention is being paid to the effect of both on the immune system. However, little research has been done on the effect of diet, nutrients or exercise on the mucosal immune system. The gastrointestinal tract (gut) is not only responsible for the entry of nutrients into the organism, but also for triggering the primary immune response to orally ingested antigens. The gut-associated lymphoid tissue contains a large amount of immune cells, disseminated all along the intestine in Peyer's patches and lamina propria. Specific nutrients or their combinations, as well as the microflora, are capable of modulating the immune system through cell activation, production of signalling molecules or gene expression. We have observed an increase in T-cells as well as a decrease in B-cells from Peyer's patches, induced by diets high in fats or carbohydrates in Balb/c mice. It has also been demonstrated that exercise modulates the immune system, where moderate levels may improve its function by increasing the proliferation of lymphocytes from various sites, including gut-associated lymphoid tissue, whereas exhaustive acute exercise may cause immunosuppression. High-fat diets combined with exercise are able to induce an increase in CD3+ lymphocytes due to increased CD8+ cells and a decrease in B-cells. Explanations and consequences of the effects of diet and exercise on the gut mucosal immunity are still being explored.


1998 ◽  
Vol 66 (9) ◽  
pp. 4503-4506 ◽  
Author(s):  
Valerie Letscher-Bru ◽  
Odile Villard ◽  
Bernhard Risse ◽  
Michael Zauke ◽  
Jean-Paul Klein ◽  
...  

ABSTRACT We studied the immune response induced in mice by recombinantToxoplasma gondii surface antigen 1 (rSAG1) protein, alone or combined with interleukin-12 (IL-12) as an adjuvant, and the protective effect against toxoplasmosis. Immunization with rSAG1 alone induced a specific humoral type 2 immunity and did not protect the animals from infection. In contrast, immunization with rSAG1 plus IL-12 redirected humoral and cellular immunity toward a type 1 pattern and reduced the brain parasite load by 40%.


Sign in / Sign up

Export Citation Format

Share Document