naphthalene dioxygenase
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 6)

H-INDEX

30
(FIVE YEARS 2)

mBio ◽  
2021 ◽  
Author(s):  
Tao Li ◽  
Yi-Zhou Gao ◽  
Jia Xu ◽  
Shu-Ting Zhang ◽  
Yuan Guo ◽  
...  

Because anthropogenic nitroaromatic compounds have entered the biosphere relatively recently, exploration of the recently evolved catabolic pathways can provide clues for adaptive evolutionary mechanisms in bacteria. The concept that nitroarene dioxygenases shared a common ancestor with naphthalene dioxygenase is well established.


2020 ◽  
Vol 21 (2) ◽  
pp. 111-118 ◽  
Author(s):  
Asmaa M.M. Mawad ◽  
Wael S. Abdel-Mageed ◽  
Abd El-Latif Hesham

Background: Petroleum polycyclic aromatic hydrocarbons (PAHs) are known to be toxic and carcinogenic for humans and their contamination of soils and water is of great environmental concern. Identification of the key microorganisms that play a role in pollutant degradation processes is relevant to the development of optimal in situ bioremediation strategies. Objective: Detection of the ability of Pseudomonas fluorescens AH-40 to consume phenanthrene as a sole carbon source and determining the variation in the concentration of both nahAC and C23O catabolic genes during 15 days of the incubation period. Methods: In the current study, a bacterial strain AH-40 was isolated from crude oil polluted soil by enrichment technique in mineral basal salts (MBS) medium supplemented with phenanthrene (PAH) as a sole carbon and energy source. The isolated strain was genetically identified based on 16S rDNA sequence analysis. The degradation of PAHs by this strain was confirmed by HPLC analysis. The detection and quantification of naphthalene dioxygenase (nahAc) and catechol 2,3-dioxygenase (C23O) genes, which play a critical role during the mineralization of PAHs in the liquid bacterial culture were achieved by quantitative PCR. Results: Strain AH-40 was identified as pseudomonas fluorescens. It degraded 97% of 150 mg phenanthrene L-1 within 15 days, which is faster than previously reported pure cultures. The copy numbers of chromosomal encoding catabolic genes nahAc and C23O increased during the process of phenanthrene degradation. Conclusion: nahAc and C23O genes are the main marker genes for phenanthrene degradation by strain AH-40. P. fluorescence AH-40 could be recommended for bioremediation of phenanthrene contaminated site.


2019 ◽  
Vol 86 (4) ◽  
Author(s):  
Yi-Zhou Gao ◽  
Xiao-Yang Liu ◽  
Hong Liu ◽  
Yuan Guo ◽  
Ning-Yi Zhou

ABSTRACT All nitroarene dioxygenases reported so far originated from Nag-like naphthalene dioxygenase of Gram-negative strains, belonging to group III of aromatic ring-hydroxylating oxygenases (RHOs). Gram-positive Rhodococcus sp. strain ZWL3NT utilizes 3-nitrotoluene (3NT) as the sole source of carbon, nitrogen, and energy for growth. It was also reported that 3NT degradation was constitutive and the intermediate was 3-methylcatechol. In this study, a gene cluster (bndA1A2A3A4) encoding a multicomponent dioxygenase, belonging to group IV of RHOs, was identified. Recombinant Rhodococcus imtechensis RKJ300 carrying bndA1A2A3A4 exhibited 3NT dioxygenase activity, converting 3NT into 3-methylcatechol exclusively, with nitrite release. The identity of the product 3-methylcatechol was confirmed using liquid chromatography-mass spectrometry. A time course of biotransformation showed that the 3NT consumption was almost equal to the 3-methylcatechol accumulation, indicating a stoichiometry conversion of 3NT to 3-methylcatechol. Unlike reported Nag-like dioxygenases transforming 3NT into 4-methylcatechol or both 4-methylcatechol and 3-methylcatechol, this Bph-like dioxygenase (dioxygenases homologous to the biphenyl dioxygenase from Rhodococcus sp. strain RHA1) converts 3NT to 3-methylcatechol without forming 4-methylcatechol. Furthermore, whole-cell biotransformation of strain RKJ300 with bndA1A2A3A4 and strain ZWL3NT exhibited the extended and same substrate specificity against a number of nitrobenzene or substituted nitrobenzenes, suggesting that BndA1A2A3A4 is likely the native form of 3NT dioxygenase in strain ZWL3NT. IMPORTANCE Nitroarenes are synthetic molecules widely used in the chemical industry. Microbial degradation of nitroarenes has attracted extensive attention, not only because this class of xenobiotic compounds is recalcitrant in the environment but also because the microbiologists working in this field are curious about the evolutionary origin and process of the nitroarene dioxygenases catalyzing the initial reaction in the catabolism. In contrast to previously reported nitroarene dioxygenases from Gram-negative strains, which originated from a Nag-like naphthalene dioxygenase, the 3-nitrotoluene (3NT) dioxygenase in this study is from a Gram-positive strain and is an example of a Bph-like nitroarene dioxygenase. The preference of hydroxylation of this enzyme at the 2,3 positions of the benzene ring to produce 3-methylcatechol exclusively from 3NT is also a unique property among the studied nitroarene dioxygenases. These findings will enrich our understanding of the diversity and origin of nitroarene dioxygenase in microorganisms.


2019 ◽  
Vol 20 (14) ◽  
pp. 3402 ◽  
Author(s):  
Maria Camilla Baratto ◽  
David A. Lipscomb ◽  
Michael J. Larkin ◽  
Riccardo Basosi ◽  
Christopher C. R. Allen ◽  
...  

Polycyclic aromatic hydrocarbons (PAHs), such as naphthalene, are potential health risks due to their carcinogenic and mutagenic effects. Bacteria from the genus Rhodococcus are able to metabolise a wide variety of pollutants such as alkanes, aromatic compounds and halogenated hydrocarbons. A naphthalene dioxygenase from Rhodococcus sp. strain NCIMB12038 has been characterised for the first time, using electron paramagnetic resonance (EPR) spectroscopy and UV-Vis spectrophotometry. In the native state, the EPR spectrum of naphthalene 1,2-dioxygenase (NDO) is formed of the mononuclear high spin Fe(III) state contribution and the oxidised Rieske cluster is not visible as EPR-silent. In the presence of the reducing agent dithionite a signal derived from the reduction of the [2Fe-2S] unit is visible. The oxidation of the reduced NDO in the presence of O2-saturated naphthalene increased the intensity of the mononuclear contribution. A study of the “peroxide shunt”, an alternative mechanism for the oxidation of substrate in the presence of H2O2, showed catalysis via the oxidation of mononuclear centre while the Rieske-type cluster is not involved in the process. Therefore, the ability of these enzymes to degrade recalcitrant aromatic compounds makes them suitable for bioremediative applications and synthetic purposes.


2019 ◽  
Vol 8 (17) ◽  
Author(s):  
Wariya Yamprayoonswat ◽  
Satapanawat Sittihan ◽  
Watthanachai Jumpathong ◽  
Montri Yasawong

Aeribacillus pallidus TD1 is a thermophilic bacterium isolated from a hot spring in Thailand. The genome sequence of A. pallidus TD1 contains a gene-encoded naphthalene dioxygenase, which is a key enzyme for naphthalene degradation.


RSC Advances ◽  
2019 ◽  
Vol 9 (20) ◽  
pp. 11465-11475 ◽  
Author(s):  
Xingchun Li ◽  
Zhenhua Chu ◽  
Xianyuan Du ◽  
Youli Qiu ◽  
Yu Li

To promote the biodegradation of aromatic hydrocarbons in petroleum-contaminated soils, naphthalene dioxygenase (NDO), which is the key metabolic enzyme that degrades aromatic hydrocarbons, was modified using molecular docking and homology modelling.


Sign in / Sign up

Export Citation Format

Share Document