retention behaviour
Recently Published Documents


TOTAL DOCUMENTS

332
(FIVE YEARS 26)

H-INDEX

34
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Zhang-Rong Liu ◽  
Wei-Min Ye ◽  
Yu-Jun Cui ◽  
He-Hua Zhu ◽  
Qiong Wang ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
He Huang ◽  
Narala Gangadhara Reddy ◽  
Xilong Huang ◽  
Peinan Chen ◽  
Peiying Wang ◽  
...  

AbstractRecent studies on water retention behaviour of biochar amended soil rarely considers the effect of pyrolysis temperature and also feedstock type into account. It is well known that pyrolysis temperature and feedstock type influences the physical and chemical properties of biochar due to stagewise decomposition of structure and chemical bonds. Further, soil density, which is in a loose state (in agricultural applications) and dense (in geo-environmental engineering applications) can also influence water retention behaviour of biochar amended soils. The major objective of this study is to investigate the water retention properties of soil amended with three different biochars in both loose and dense state. The biochars, i.e. water hyacinth biochar (WHB), chicken manure biochar (CMB) and wood biochar (WB) were produced in-house at different pyrolysis temperature. After then, biochars at 5% and 10% (w/w%) were amended to the soil. Water retention behaviour (soil suction and gravimetric water content) was studied under drying and wetting cycle simulated by varying relative humidity (RH, 50–90%). Results show that 10% WHB produced at 300 °C were found to possess highest water retention. CMB is found to possess higher water retention than WB for 10% amendment ratio. In general, the addition of three biochars (at both 300 °C and 600 °C) at 10% (w/w) significantly improved the water retention at all suction ranges in both loose and dense compaction state as compared to that of the bare soil. The adsorption (wetting) and desorption (drying) capacity of biochar amended soils is constant at corresponding RH.


2021 ◽  
Author(s):  
Gema De la Morena ◽  
Vicente Navarro ◽  
Laura Asensio ◽  
Domenico Gallipoli

AbstractThis paper presents a constitutive model that predicts the water retention behaviour of compacted clays with evolving bimodal pore size distributions. In line with previous research, the model differentiates between the water present inside the saturated pores of the clay aggregates (the microstructure) and the water present inside the pores between clay aggregates (the macrostructure). A new formulation is then introduced to account for the effect of the macrostructural porosity changes on the retention behaviour of the soil, which results in a consistent evolution of the air-entry value of suction with volumetric deformations. Data from wetting tests on three different active clays (i.e. MX-80 bentonite, FEBEX bentonite, and Boom clay), subjected to distinct mechanical restraints, were used to formulate, calibrate, and validate the proposed model. Results from free swelling tests were also modelled by using both the proposed double porosity model and a published single porosity model, which confirmed the improvement in the predictions of degree of saturation by the present approach. The proposed retention model might be applied, for example, to the simulation of the hydromechanical behaviour of engineered bentonite barriers in underground nuclear waste repositories, where compacted active clays are subjected to changes of both suction and porosity structure under restrained volume conditions.


2021 ◽  
Vol 337 ◽  
pp. 02006
Author(s):  
Carlos Pereira ◽  
João Ribas Maranha ◽  
Rafaela Cardoso

A new constitutive model for the soil-water retention behaviour of unsaturated soils is proposed, able to reproduce the main drying and wetting paths, the cyclic retention behaviour and its dependence on the specific volume. The most significant aspect is the inclusion of the evolution, with the specific volume, of the degree of saturation when suction tends to zero in wetting paths considering the presence of entrapped air bubbles. The model is used to reproduce with success the drying/wetting cycles of two Pearl clay samples.


2021 ◽  
Vol 249 ◽  
pp. 09008
Author(s):  
Alejandro López ◽  
Agostino Walter Bruno ◽  
Sadegh Nadimi

This paper presents a Computational Fluid Dynamics (CFD) model on the effect of capillary pressure on the retention behaviour of a granular material. The model proposes an unprecedented CFD insight into the onset of liquid menisci at the inter-particles contact under varying hydraulic conditions. The present work models the material grains as smooth spherical particles that define a porous network filled by two interstitial fluids: air and silicon oil. The numerical model has been subsequently validated against experimental measurements of the degree of saturation at different capillary pressures taken by Dullien et al. [F.A. Dullien, C. Zarcone, I.F. MacDonald, A. Collins, R.D. Bochard. J. Colloid Interface Sci. 127, 2 (1989)] in a system of smooth glass beads flooded with silicon oil. Results from the numerical simulations confirm the good capability of the model to reproduce the experimental retention behaviour of the granular material. Finally, the present paper laid the basis for future CFD studies on the effect of various factors (e.g. hydraulic hysteresis, surface roughness and/or grain shape) on the capillary pressure acting at the interparticle contact.


2020 ◽  
Vol 65 (1) ◽  
pp. 4654-4660
Author(s):  
Suzana Apostolov ◽  
Gyöngyi Vastag ◽  
Borko Matijević ◽  
Tatjana Đaković-Sekulić ◽  
Aleksandar Marinković

2020 ◽  
Vol 266 ◽  
pp. 105455 ◽  
Author(s):  
Charles Wang Wai Ng ◽  
Seth Tawiah Owusu ◽  
Chao Zhou ◽  
Abraham Chung Fai Chiu

Sign in / Sign up

Export Citation Format

Share Document