ethylene insensitivity
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 1)

H-INDEX

15
(FIVE YEARS 1)

2019 ◽  
Vol 71 (1) ◽  
pp. 154-167 ◽  
Author(s):  
Alicia García ◽  
Encarnación Aguado ◽  
Cecilia Martínez ◽  
Damian Loska ◽  
Sergi Beltrán ◽  
...  

Abstract High-throughput screening of an ethyl methanesulfonate-generated mutant collection of Cucurbita pepo using the ethylene triple-response test resulted in the identification of two semi-dominant ethylene-insensitive mutants: etr1a and etr2b. Both mutations altered sex determination mechanisms, promoting conversion of female into bisexual or hermaphrodite flowers, and monoecy into andromonoecy, thereby delaying the transition to female flowering and reducing the number of pistillate flowers per plant. The mutations also altered the growth rate and maturity of petals and carpels in pistillate flowers, lengthening the time required for flowers to reach anthesis, as well as stimulating the growth rate of ovaries and the parthenocarpic development of fruits. Whole-genome sequencing allowed identification of the causal mutation of the phenotypes as two missense mutations in the coding region of CpETR1A and CpETR2B, each one corresponding to one of the duplicates of ethylene receptor genes highly homologous to Arabidopsis ETR1 and ETR2. The phenotypes of homozygous and heterozygous single- and double-mutant plants indicated that the two ethylene receptors cooperate in the control of the ethylene response. The level of ethylene insensitivity, which was determined by the strength of each mutant allele and the dose of wild-type and mutant etr1a and etr2b alleles, correlated with the degree of phenotypic changes in the mutants.


2018 ◽  
Author(s):  
Susan I Gibson

Trichomes, specialized cells that form on the above ground parts of plants, are useful model systems for studying cell differentiation. In this study, the plant hormone ethylene was found to strongly inhibit formation of trichomes on stems of Arabidopsis thaliana. Plants grown in the presence of high concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid fail to form trichomes on their primary inflorescences. In addition, plants carrying mutations in CTR1 that confer a constitutive response to ethylene exhibit severe reductions in stem trichome numbers. In contrast, plants carrying mutations that confer ethylene insensitivity, and plants grown in the presence of an ethylene biosynthesis inhibitor, produce normal numbers of stem trichomes. Together, these results suggest that either excess ethylene or a constitutive ethylene response prevents the normal differentiation of cells that would otherwise form stem trichomes. Reduced ethylene levels and decreased ethylene response, in constrast, appear insufficient to cause cells that do not normally form trichomes to form trichomes. In contrast to ethylene, application of exogenous Glc results in increased stem trichome numbers. Besides affecting stem trichome numbers, ethylene may also affect branching of stem trichomes. In Arabidopsis thaliana, the vast majority of stem trichomes are unbranched. When wild-type Arabidiopsis thaliana of the Col-0 ecotype are grown in the presence of an ethylene biosynthesis inhibitor, the percentage of stem trichomes that are branched increases significantly. However, growth in the presence of an ethylene biosynthesis inhibitor does not affect stem branching in wild-type Arabidopsis thaliana of the Ler-0 ecotype. Plants carrying the etr1-1 and ein2-1 mutations, which cause ethylene insensitivity, have an increased percentage of branched stem trichomes. In contrast, plants carrying the ctr1-1 and ctr1-12 mutations have a decreased percentage of branched stem trichomes. Growth in the presence of a precursor of ethylene biosynthesis also causes a substantial reduction in branching of Arabidopsis leaf trichomes, suggesting that ethylene has a negative effect on branching of both leaf and stem trichomes in Arabidopsis.


2018 ◽  
Author(s):  
Susan I Gibson

Trichomes, specialized cells that form on the above ground parts of plants, are useful model systems for studying cell differentiation. In this study, the plant hormone ethylene was found to strongly inhibit formation of trichomes on stems of Arabidopsis thaliana. Plants grown in the presence of high concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid fail to form trichomes on their primary inflorescences. In addition, plants carrying mutations in CTR1 that confer a constitutive response to ethylene exhibit severe reductions in stem trichome numbers. In contrast, plants carrying mutations that confer ethylene insensitivity, and plants grown in the presence of an ethylene biosynthesis inhibitor, produce normal numbers of stem trichomes. Together, these results suggest that either excess ethylene or a constitutive ethylene response prevents the normal differentiation of cells that would otherwise form stem trichomes. Reduced ethylene levels and decreased ethylene response, in constrast, appear insufficient to cause cells that do not normally form trichomes to form trichomes. In contrast to ethylene, application of exogenous Glc results in increased stem trichome numbers. Besides affecting stem trichome numbers, ethylene may also affect branching of stem trichomes. In Arabidopsis thaliana, the vast majority of stem trichomes are unbranched. When wild-type Arabidiopsis thaliana of the Col-0 ecotype are grown in the presence of an ethylene biosynthesis inhibitor, the percentage of stem trichomes that are branched increases significantly. However, growth in the presence of an ethylene biosynthesis inhibitor does not affect stem branching in wild-type Arabidopsis thaliana of the Ler-0 ecotype. Plants carrying the etr1-1 and ein2-1 mutations, which cause ethylene insensitivity, have an increased percentage of branched stem trichomes. In contrast, plants carrying the ctr1-1 and ctr1-12 mutations have a decreased percentage of branched stem trichomes. Growth in the presence of a precursor of ethylene biosynthesis also causes a substantial reduction in branching of Arabidopsis leaf trichomes, suggesting that ethylene has a negative effect on branching of both leaf and stem trichomes in Arabidopsis.


2018 ◽  
Vol 115 (10) ◽  
pp. 2520-2525 ◽  
Author(s):  
Biao Ma ◽  
Yang Zhou ◽  
Hui Chen ◽  
Si-Jie He ◽  
Yi-Hua Huang ◽  
...  

The phytohormone ethylene regulates many aspects of plant growth and development. EIN2 is the central regulator of ethylene signaling, and its turnover is crucial for triggering ethylene responses. Here, we identified a stabilizer of OsEIN2 through analysis of the rice ethylene-response mutant mhz3. Loss-of-function mutations lead to ethylene insensitivity in etiolated rice seedlings. MHZ3 encodes a previously uncharacterized membrane protein localized to the endoplasmic reticulum. Ethylene induces MHZ3 gene and protein expression. Genetically, MHZ3 acts at the OsEIN2 level in the signaling pathway. MHZ3 physically interacts with OsEIN2, and both the N- and C-termini of MHZ3 specifically associate with the OsEIN2 Nramp-like domain. Loss of mhz3 function reduces OsEIN2 abundance and attenuates ethylene-induced OsEIN2 accumulation, whereas MHZ3 overexpression elevates the abundance of both wild-type and mutated OsEIN2 proteins, suggesting that MHZ3 is required for proper accumulation of OsEIN2 protein. The association of MHZ3 with the Nramp-like domain is crucial for OsEIN2 accumulation, demonstrating the significance of the OsEIN2 transmembrane domains in ethylene signaling. Moreover, MHZ3 negatively modulates OsEIN2 ubiquitination, protecting OsEIN2 from proteasome-mediated degradation. Together, these results suggest that ethylene-induced MHZ3 stabilizes OsEIN2 likely by binding to its Nramp-like domain and impeding protein ubiquitination to facilitate ethylene signal transduction. Our findings provide insight into the mechanisms of ethylene signaling.


2016 ◽  
Vol 16 (1) ◽  
Author(s):  
Line Jensen ◽  
Josefine Nymark Hegelund ◽  
Andreas Olsen ◽  
Henrik Lütken ◽  
Renate Müller

2009 ◽  
Vol 104 (2) ◽  
pp. 277-285 ◽  
Author(s):  
Dasharath Lohar ◽  
Jiri Stiller ◽  
Jason Kam ◽  
Gary Stacey ◽  
Peter M. Gresshoff

Sign in / Sign up

Export Citation Format

Share Document