fungicide insensitivity
Recently Published Documents


TOTAL DOCUMENTS

12
(FIVE YEARS 4)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Jolyon L.A. Dodgson ◽  
Bo Liu ◽  
Hannah J Wileman ◽  
Euphemia S Mutasa-Gottgens ◽  
Avice M Hall

Strawberry powdery mildew (Podosphaera aphanis) causes serious losses in UK crops, potentially reducing yields by as much as 70%. Consequently, conventional fungicide application programmes tend to recommend a prophylactic approach using insurance sprays, risking the development of fungicide insensitivity and requiring careful management relative to harvest periods to avoid residual fungicides on harvested fruit. This paper describes the development of a prediction system to guide the control of P. aphanis  by the application of fungicides only when pathogen infection and disease progression are likely. The system was developed over a 15-year period on commercial farms starting with its establishment, validation and then deployment to strawberry growers. This involved three stages: 1. Identification and validation of parameters for inclusion in the prediction system (2004-2008). 2. Development of the prediction system in compact disc format (2009-2015). 3. Development and validation of the prediction system in a web-based format and cost-benefit analysis (2016-2020). The prediction system was based on the temporal accumulation of conditions (temperature and relative humidity) conducive to the development of P. aphanis , which sporulates at 144 accumulated disease-conducive hours. Sensitivity analysis was performed to refine the prediction system parameters. Field validation of the results demonstrated that to effectively control disease, the application of fungicides was best done between 125 and 144 accumulated hours of disease-conducive conditions. A cost-benefit analysis indicated that, by comparison with the number and timing of fungicide applications in conventional insurance disease control programmes, the prediction system enabled good disease control with significantly fewer fungicide applications (between one and four sprays less) (df=7, t=7.6, p =0.001) and reduced costs (savings between £35-£493/hectare) (df=7, t=4.0, p =0.01) for the growers.


Plant Disease ◽  
2020 ◽  
Author(s):  
Tonima Islam ◽  
Cecil Vera ◽  
Jan Slaski ◽  
Ramona Mohr ◽  
Khalid Y Rashid ◽  
...  

Among the diseases that have the potential to cause damage to flax every year, pasmo, caused by Septoria linicola, is the most important. Fungicide application and a diverse crop rotation are the most important strategies to control this disease because there is little variation in resistance among flax cultivars. However, few fungicide products are available to flax growers. Field studies were conducted at four locations in Western Canada in 2014, 2015 and 2016 to determine the effect of two fungicide active ingredients applied singly and in combination: pyraclostrobin, fluxapyroxad and fluxapyroxad+pyraclostrobin; and two application timings (early-flower, mid-flower and at both stages) on pasmo severity, seed yield and quality of flaxseed. The results indicated that among the three fungicide treatments, both pyraclostrobin and fluxapyroxad+pyraclostrobin controlled pasmo effectively, however, fluxapyroxad+pyraclostrobin was the most beneficial to improve the quality and quantity of the seed at most of the site-years. Disease severity in the fungicide-free control was 70%, application of fluxapyroxad+pyraclostrobin decreased disease severity to 18%, followed by pyraclostrobin (23%) and fluxapyroxad (48%). Application of fluxapyroxad+pyraclostrobin also improved seed yield to 2562 kg ha-1 compared with 1874 kg ha-1 for the fungicide-free control, followed by pyraclostrobin (2391 kg ha-1) and fluxapyroxad (2340 kg ha-1). Fungicide application at early and mid-flowering stage had the same effects on disease severity and seed yield; however, seed quality was improved more when fungicide was applied at mid-flowering stage. Continuous use of the same fungicide may result in the development of fungicide insensitivity in the pathogen population. Thus, sensitivity of S. linicola isolates to pyraclostrobin and fluxapyroxad fungicides were determined by the spore germination and microtiter assay methods. Fungicide insensitivity was not detected among the 73 isolates of S. linicola tested against either of these fungicides.


Plant Disease ◽  
2020 ◽  
Vol 104 (1) ◽  
pp. 82-93 ◽  
Author(s):  
Nikhilesh Dhar ◽  
Bullo Erena Mamo ◽  
Krishna V. Subbarao ◽  
Steven T. Koike ◽  
Alan Fox ◽  
...  

The lettuce downy mildew pathogen, Bremia lactucae, is an obligate oomycete that causes extensive produce losses. Initial chlorotic symptoms that severely reduce the market value of the produce are followed by the appearance of white, downy sporulation on the abaxial side of the leaves. These spores become airborne and disseminate the pathogen. Controlling lettuce downy mildew has relied on repeated fungicide applications to prevent outbreaks. However, in addition to direct economic costs, heterogeneity and rapid adaptation of this pathogen to repeatedly applied fungicides has led to the development of fungicide-insensitivity in the pathogen. We deployed a quantitative PCR assay-based detection method using a species-specific DNA target for B. lactucae coupled with a spore trap system to measure airborne B. lactucae spore loads within three commercial fields that each contained experimental plots, designated EXP1 to EXP3. Based upon these measurements, when the spore load in the air reached a critical level (8.548 sporangia per m3 air), we advised whether or not to apply fungicides on a weekly basis within EXP1 to EXP3. This approach saved three sprays in EXP1, and one spray each in EXP2 and EXP3 without a significant increase in disease incidence. The reduction in fungicide applications to manage downy mildew can decrease lettuce production costs while slowing the development of fungicide resistance in B. lactucae by eliminating unnecessary fungicide applications.


Plant Disease ◽  
2019 ◽  
Vol 103 (2) ◽  
pp. 214-222 ◽  
Author(s):  
Cameron M. Stephens ◽  
John Kaminski

Repeated fungicide applications are typically required to provide adequate control of dollar spot on golf courses and may shift Sclerotinia homoeocarpa populations from sensitive to insensitive or resistant to an active ingredient. The objective of this study was to characterize the geographic distribution of fungicide-insensitive, fungicide-resistant, and multiple fungicide insensitive (MFI) S. homoeocarpa populations on golf courses in Pennsylvania and the surrounding region. S. homoeocarpa isolates (n = 681) were collected from 45 different golf courses or research facilities. Each isolate was evaluated in vitro against propiconazole, iprodione, boscalid, and thiophanate-methyl using discriminatory concentrations of 0.1, 1.0, 1,000, and 1,000 µg of active ingredient per milliliter of PDA, respectively. Relative mycelial growth (RMG) values were used to determine sensitivity or insensitivity based on comparison with a baseline population. Of the 681 isolates evaluated, 81, 80, and 85% exhibited reduced sensitivity to boscalid, iprodione, and propiconazole, respectively. A total of 41% of the isolates were resistant to thiophanate-methyl. Based on mean RMG of all isolates from each golf course, 16, 35, and 37 of the 45 golf courses exhibited reduced sensitivity to boscalid, iprodione, and propiconazole, respectively. A total of 585 isolates (86%) exhibited an MFI profile in which they were insensitive or resistant to at least two fungicides evaluated. Isolates with reduced sensitivity to boscalid, iprodione, and propiconazole, but sensitive to thiophanate-methyl, were the most common phenotype within the three-MFI profile. Fungicide insensitivity and resistance to commonly used fungicides, as well as MFI profiles, were prevalent in Pennsylvania and the surrounding areas and may cause management challenges.


2014 ◽  
Vol 36 (3) ◽  
pp. 327-340 ◽  
Author(s):  
Bruce D. Gossen ◽  
Odile Carisse ◽  
Lawrence M. Kawchuk ◽  
Hervé Van Der Heyden ◽  
Mary Ruth McDonald

Plant Disease ◽  
2014 ◽  
Vol 98 (1) ◽  
pp. 99-102 ◽  
Author(s):  
J. A. LaMondia

Calonectria pseudonaviculata causes leaf spot and stem lesions resulting in defoliation and dieback of boxwood. Fungicides representing 20 different active ingredients from 13 different Fungicide Resistance Action Committee groups were evaluated for their effects on conidial germination and mycelial growth using in vitro assays, and the concentration that suppressed fungal growth to 15% of that on unamended media (EC85) values were determined. A number of fungicides strongly inhibited mycelial growth of C. pseudonaviculata. Four demethylation inhibitor fungicides had EC85 values of 1.2 μg a.i./ml or less. Thiophanate-methyl, fludioxonil, pyraclostrobin, trifloxystrobin, kresoxim-methyl, mancozeb, and chlorothalonil also had activity against mycelial growth. Fludioxonil + cyprodinil had a lower EC85 than the same rate of fludioxonil alone, suggesting that cyprodinil had activity against mycelial growth. Fungicides that inhibited C. pseudonaviculata conidial germination include pyraclostrobin, trifloxystrobin, and kresoxim-methyl as well as fludioxonil, mancozeb, chlorothalonil, and boscalid. Quinoxyfen, etridiazole, fenhexamid, hymexazol, famoxadone, and cymoxanil did not inhibit either C. pseudonaviculata conidial germination or mycelial growth. In comparison with values found in the literature, EC50 values for kresoxim-methyl were up to 10 times higher than reported previously, suggesting that fungicide insensitivity may have developed. Protectant fungicides with activity against conidial germination and systemic fungicides with activity against mycelial growth, such as those identified here, may be complementary to achieve the high levels of pathogen management required for control of this disease. In addition, multiple fungicide active ingredients from different mode-of-action groups used in mixtures or over time may also act to slow selection for fungicide insensitivity.


2014 ◽  
Vol 15 (3) ◽  
pp. 141-144
Author(s):  
Ashley A. Thompson ◽  
Seanna L. Annis

The fungicide sensitivity in populations of Monilinia vacciniicorymbosi (Reade) Honey, the fungus that causes mummy berry, may be affected by the use of fungicides for control of this fungus. The sensitivity of M. vaccinii-corymbosi isolates from conventionally and organically managed fields and an unmanaged, wild area was determined for the fungicides propiconazole and fenbuconazole. Propiconazole has been used for more than 14 years to control mummy berry, and fenbuconazole has become more widely used in the last 4 years than previously. The baseline EC50 for isolates from the unmanaged area was significantly higher for propiconazole (0.016 μg/ml) than fenbuconazole (0.006 μg/ml). The propiconazole EC50 for isolates from conventionally managed fields (0.020 μg/ml) was significantly higher than for isolates from the unmanaged area (0.016 μg/ml), but not from the organically managed fields (0.018 μg/ml). No significant differences in the fenbuconazole EC50 were found among management types. The biennial long-term use of the fungicide propiconazole on populations of M. vaccinii-corymbosi may contribute to the development of fungicide insensitivity over time. Accepted 15 August 2014. Published 24 September 2014.


Plant Disease ◽  
2013 ◽  
Vol 97 (8) ◽  
pp. 1037-1041 ◽  
Author(s):  
J. M. Foster ◽  
R. P. Naegele ◽  
M. K. Hausbeck

Phytophthora capsici is a soilborne pathogen of major economic importance in pepper, and of less importance in tomato and eggplant production. As soil fumigation becomes more expensive and limited, and fungicide insensitivity of P. capsici isolates becomes more prevalent, grafting is quickly becoming an industry-favored method to control soilborne diseases. Greenhouse experiments were performed to evaluate an eggplant cultivar (Classic), two eggplant lines (EG195, EG203), a pepper line (CM334), and three pepper cultivars (Paladin, Camelot, and Red Knight) for root rot resistance to 14 P. capsici isolates. The isolates showed various degrees of virulence between pepper and eggplant in both experiments. Both eggplant and one pepper lines showed moderate resistance to the most virulent isolates tested in experiment one. The partially resistant pepper cultivar, Paladin, was significantly more susceptible than CM334 and the eggplant lines, but was still resistant to most isolates. In the second experiment, the eggplant cultivar Classic and the susceptible pepper cultivar Red Knight were both susceptible to most isolates tested, while EG203 and EG195 were resistant to most isolates. The two eggplant breeding lines, EG195 and EG203, showed moderate resistance to all isolates tested in both experiments. This is the first reported evaluation of eggplant resistance to P. capsici. Further research is warranted to test eggplant lines EG195 and EG203 for resistance to a wide range of soilborne pests and to evaluate their usefulness as P. capsici–resistant rootstocks for peppers, tomatoes, and eggplants.


2011 ◽  
Vol 101 (10) ◽  
pp. 1224-1233 ◽  
Author(s):  
P. H. F. Hobbelen ◽  
N. D. Paveley ◽  
F. van den Bosch

This study used mathematical modeling to predict whether mixtures of a high-resistance-risk and a low-risk fungicide delay selection for resistance against the high-risk fungicide. We used the winter wheat and Mycosphaerella graminicola host–pathogen system as an example, with a quinone outside inhibitor fungicide as the high-risk and chlorothalonil as the low-risk fungicide. The usefulness of the mixing strategy was measured as the “effective life”: the number of seasons that the disease-induced reduction of the integral of canopy green area index during the yield forming period could be kept <5%. We determined effective lives for strategies in which the dose rate (i) was constant for both the low-risk and high-risk fungicides, (ii) was constant for the low-risk fungicide but could increase for the high-risk fungicide, and (iii) was adjusted for both fungicides but their ratio in the mixture was fixed. The effective life was highest when applying the full label-recommended dose of the low-risk fungicide and adjusting the dose of the high-risk fungicide each season to the level required to maintain effective control. This strategy resulted in a predicted effective life of ≤12 years compared with 3 to 4 years when using the high risk fungicide alone.


2007 ◽  
Vol 87 (4) ◽  
pp. 937-944 ◽  
Author(s):  
K. F. Chang ◽  
H. U. Ahmed ◽  
S. F. Hwang ◽  
B. D. Gossen ◽  
S. E. Strelkov ◽  
...  

Chickpea production faces a major challenge from ascochyta blight (Ascochyta rabiei), a devastating disease that can cause total crop loss. To assess the effect of repeated fungicide application on disease progress, strobilurin fungicides, primarily alternating pyraclostrobin and azoxystrobin treatments, were applied up to five times per year in each of 2 yr. A single application or two early applications reduced blight severity. A third application resulted in additional benefits in 1 of 2 yr, but additional applications did not reduce severity further. To monitor for fungicide tolerance in populations of A. rabiei, 66 single- spore isolates were collected and grown on growth media amended with chlorothalonil, mancozeb, or pyraclostrobin. Insensitivity to one or more of the fungicides was detected in 49 (74%) of the isolates. Based on the effect on conidial germination, insensitivity to pyraclostrobin or chlorothalonil was observed in 26 of 37 isolates (70%). Repeated fungicide application may be selecting for insensitive isolates of the pathogen; fungicide application should be combined with cultural measures to control ascochyta blight. Key words: Fungicide insensitivity, Ascochyta rabiei


Sign in / Sign up

Export Citation Format

Share Document