scholarly journals Hydrogel Surface-Modified Polyurethane Copolymer Film with Water Permeation Resistance and Biocompatibility for Implantable Biomedical Devices

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 447
Author(s):  
Hey In Jeong ◽  
Dae Hyeok An ◽  
Jun Woo Lim ◽  
Taehoon Oh ◽  
Hojin Lee ◽  
...  

To use implantable biomedical devices such as electrocardiograms and neurostimulators in the human body, it is necessary to package them with biocompatible materials that protect the internal electronic circuits from the body’s internal electrolytes and moisture without causing foreign body reactions. Herein, we describe a hydrogel surface-modified polyurethane copolymer film with concurrent water permeation resistance and biocompatibility properties for application to an implantable biomedical device. To achieve this, hydrophobic polyurethane copolymers comprising hydrogenated poly(ethylene-co-butylene) (HPEB) and aliphatic poly(carbonate) (PC) were synthesized and their hydrophobicity degree and mechanical properties were adjusted by controlling the copolymer composition ratio. When 10 wt% PC was introduced, the polyurethane copolymer exhibited hydrophobicity and water permeation resistance similar to those of HPEB; however, with improved mechanical properties. Subsequently, a hydrophilic poly(vinyl pyrrolidone) (PVP) hydrogel layer was formed on the surface of the polyurethane copolymer film by Fenton reaction using an initiator and crosslinking agent and the effect of the initiator and crosslinking agent immobilization time, PVP concentration and crosslinking agent concentration on the hydrogel properties were investigated. Finally, MTT assay showed that the hydrogel surface-modified polyurethane copolymer film displays excellent biocompatibility.

Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 832
Author(s):  
Mohammad Mirazul Islam ◽  
Dina B. AbuSamra ◽  
Alexandru Chivu ◽  
Pablo Argüeso ◽  
Claes H. Dohlman ◽  
...  

Collagen scaffolds, one of the most used biomaterials in corneal tissue engineering, are frequently crosslinked to improve mechanical properties, enzyme tolerance, and thermal stability. Crosslinkers such as 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) are compatible with tissues but provide low crosslinking density and reduced mechanical properties. Conversely, crosslinkers such as glutaraldehyde (GTA) can generate mechanically more robust scaffolds; however, they can also induce greater toxicity. Herein, we evaluated the effectivity of double-crosslinking with both EDC and GTA together with the capability of sodium metabisulfite (SM) and sodium borohydride (SB) to neutralize the toxicity and restore biocompatibility after crosslinking. The EDC-crosslinked collagen scaffolds were treated with different concentrations of GTA. To neutralize the free unreacted aldehyde groups, scaffolds were treated with SM or SB. The chemistry involved in these reactions together with the mechanical and functional properties of the collagen scaffolds was evaluated. The viability of the cells grown on the scaffolds was studied using different corneal cell types. The effect of each type of scaffold treatment on human monocyte differentiation was evaluated. One-way ANOVA was used for statistical analysis. The addition of GTA as a double-crosslinking agent significantly improved the mechanical properties and enzymatic stability of the EDC crosslinked collagen scaffold. GTA decreased cell biocompatibility but this effect was reversed by treatment with SB or SM. These agents did not affect the mechanical properties, enzymatic stability, or transparency of the double-crosslinked scaffold. Contact of monocytes with the different scaffolds did not trigger their differentiation into activated macrophages. Our results demonstrate that GTA improves the mechanical properties of EDC crosslinked scaffolds in a dose-dependent manner, and that subsequent treatment with SB or SM partially restores biocompatibility. This novel manufacturing approach would facilitate the translation of collagen-based artificial corneas to the clinical setting.


Author(s):  
Rike Brendgen ◽  
Carsten Graßmann ◽  
Thomas Grethe ◽  
Boris Mahltig ◽  
Anne Schwarz-Pfeiffer

AbstractPolyvinyl butyral is used in safety glass interlayers, mainly in car windshields. Legislative regulations require a recycling of cars after their lifetime and therefore also their safety glass. This causes the availability of recycled polyvinyl butyrate (r-PVB) originated from safety glass interlayers. Due to deteriorated optical properties, such as the transparency, and unknown amounts of plasticizers, it is challenging to reuse the recycled material in new windshields. Therefore, it is of particular interest to find new fields of application for r-PVB, such as the usage as a textile coating. In this research, r-PVB was investigated as a material for yarn coating. Polyester and polyamide mono- and multifilament yarns were coated continuously with solely a polymer dispersion and with mixtures of crosslinking agent and polymer dispersion. Crosslinked r-PVB coatings showed enhanced properties toward abrasion and chemical resistance. Coatings without the crosslinking agent showed a diminished abrasion resistance and could be washed off with ethanol. Mechanical properties of the monofilaments were influenced by the r-PVB coating in general. However, varying concentrations of the crosslinking agent did not affect the mechanical properties.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2174
Author(s):  
Diana Gregor-Svetec ◽  
Mirjam Leskovšek ◽  
Blaž Leskovar ◽  
Urška Stanković Elesini ◽  
Urška Vrabič-Brodnjak

Polylactic acid (PLA) is one of the most suitable materials for 3D printing. Blending with nanoparticles improves some of its properties, broadening its application possibilities. The article presents a study of composite PLA matrix filaments with added unmodified and lignin/polymerised lignin surface-modified nanofibrillated cellulose (NFC). The influence of untreated and surface-modified NFC on morphological, mechanical, technological, infrared spectroscopic, and dynamic mechanical properties was evaluated for different groups of samples. As determined by the stereo and scanning electron microscopy, the unmodified and surface-modified NFCs with lignin and polymerised lignin were present in the form of plate-shaped agglomerates. The addition of NFC slightly reduced the filaments’ tensile strength, stretchability, and ability to absorb energy, while in contrast, the initial modulus slightly improved. By adding NFC to the PLA matrix, the bending storage modulus (E’) decreased slightly at lower temperatures, especially in the PLA samples with 3 wt% and 5 wt% NFC. When NFC was modified with lignin and polymerised lignin, an increase in E’ was noticed, especially in the glassy state.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1510
Author(s):  
Marek Pöschl ◽  
Shibulal Gopi Sathi ◽  
Radek Stoček ◽  
Ondřej Kratina

The rheometer curing curves of neat natural rubber (NR) and neat chloroprene rubber (CR) with maleide F (MF) exhibit considerable crosslinking torque at 180 °C. This indicates that MF can crosslink both these rubbers via Alder-ene reactions. Based on this knowledge, MF has been introduced as a co-crosslinking agent for a 50/50 blend of NR and CR in conjunction with accelerated sulfur. The delta (Δ) torque obtained from the curing curves of a blend with the addition of 1 phr MF was around 62% higher than those without MF. As the content of MF increased to 3 phr, the Δ torque was further raised to 236%. Moreover, the mechanical properties, particularly the tensile strength of the blend with the addition of 1 phr MF in conjunction with the accelerated sulfur, was around 201% higher than the blend without MF. The overall tensile properties of the blends cured with MF were almost retained even after ageing the samples at 70 °C for 72 h. This significant improvement in the curing torque and the tensile properties of the blends indicates that MF can co-crosslink between NR and CR via the Diels–Alder reaction.


2019 ◽  
Vol 15 (1) ◽  
pp. 76-86 ◽  
Author(s):  
Jinwei Zhao ◽  
Rami Ghannam ◽  
Mengyao Yuan ◽  
Himmy Tam ◽  
Muhammad Imran ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document