solid biomass fuel
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 13)

H-INDEX

9
(FIVE YEARS 4)

2021 ◽  
Vol 16 (2) ◽  
pp. 444-459
Author(s):  
Kopal Verma ◽  
Umesh Chandra Kulshrestha

Majority of India’s rural population depends on biomass burning for cooking and heating purposes on traditional cook stoves called Chullah which results into indoor air pollution. The sampling for this study was carried out in two villages of India viz. Budhwada, Madhya Pradesh (M.P.) and Baggi, Himachal Pradesh (H.P.). Both the regions are significantly different in terms of culture, traditions, topography and daily practices and hence this study helped in understanding the contrast between these regions. The concentrations of carbonaceous aerosols viz. OC (Organic Carbon) and EC (Elemental Carbon) were evaluated for different fuel use in four different houses of each village. Introducing the concept of soft approaches, the residents were asked to bring certain changes in their practices by cooking either with solid biomass or Liquefied Petroleum Gas (LPG) as fuel. The overall average concentration of OC was found to be higher for Budhwada (M.P.) at 124.34 ± 34.68 µg/m3 than at Baggi, (H.P.) with value 105.26 ± 35.63 µg/m3 whereas the reverse was true for the average concentration of EC with value 62.98 ± 20.75 µg/m3 at Baggi, (H.P.) and 55.51 ± 15.51 µg/m3 at Budhwada (M.P.). The average OC and EC concentrations from solid biomass fuel (dung cake) burning at Budhwada (M.P.) was respectively higher by 56.14% and 33.57% as compared to the LPG usage. Similarly, in Baggi (H.P.) village with LPG usage, a significant reduction was observed in OC and EC concentrations (76.69% and 70.10% respectively) when compared with fuelwood burning. House-wise and time-wise variations of carbonaceous aerosols at both the sites confirmed that their concentrations are lower in houses with greater ventilation and higher in cooking times (morning and evening). In Budhwada (M.P.), the concentrations of K+, Ca2+ and SO42- ions decreased significantly from dung cake to LPG use by 67.91%, 76.98% and 51.85% respectively. In Baggi (H.P.), K+ ion concentration was decreased by 63.4% from fuelwood to LPG use. A questionnaire survey conducted on the residents also corroborated the above findings where the residents agreed that LPG use has health benefits over solid biomass fuel usage but the challenges such as supply of LPG into rural interiors, financial feasibility, etc. were of serious concern. Also, changing the contemporary mindset of rural population is a challenging task.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1409
Author(s):  
Ioan Ţenu ◽  
Cecilia Roman ◽  
Lacrimioara Senila ◽  
Radu Roşca ◽  
Petru Cârlescu ◽  
...  

Concerns over the past few decades have focused, more than ever, on finding and implementing efficient, handy, and renewable sources to reduce pollution. Biomass, in general, and biomass from annual vine cuttings, are renewable sources that can be used by a large amount of the population. Biomass densification in the form of briquettes is an efficient method of obtaining a biofuel with the same characteristics as wood. The production of densified material as a briquette consists of sampling, drying naturally, chopping, grinding and briquetting the vine cuttings. The obtained results showed that the size of the briquettes met the requirements imposed by the standard, with a length between 185 mm and 400 mm and a diameter of 58 ± 0.75 mm, the humidity of the briquettes varying between 5.42%, at Sauvignon Blanc and 7.98% for Pinot Noir, while the durability of the briquettes registered minimum values of 98.17% for Muscat Ottonel and a maximum of 99.14% for Feteasca Neagra, and a unit density with values between 1227 kg/m3 for Feteasca Alba and 1389 kg/m3 for Pinot Noir. The conclusions of these experiments are promising, showing that the densification of biomass from vines cuttings qualifies within the standard requirements for obtaining a valuable biofuel.


2021 ◽  
Author(s):  
Edward Martey

Abstract BackgroundThe Sustainable Development Goal (SDG) seven highlights the need to ensure access to affordable, reliable, sustainable and modern energy for all. Improving access to reliable and affordable modern energy for cooking have far-reaching benefits on human health. This study examines the relationship between the adoption of solid biomass fuel (SBF) for cooking and health outcomes.MethodsThe study used a nationally representative household-level data from a survey of 14,009 households in Ghana. For the econometric analysis, a biprobit model was employed to estimate the effect of SBF adoption on health outcomes.ResultsThe results show that adoption of SBF increases the probability of a household reporting ill-health and reporting frequently to a health facility by 25% each, respectively.ConclusionsThe findings of the study imply that ensuring affordability of clean fuel will enable households in developing countries to transition from traditional biomass to clean cooking fuels. Government programs and policies that aim at encouraging the use of clean fuel for cooking must target private occupants and homeowners.


2020 ◽  
Vol 48 (1) ◽  
Author(s):  
Abraham Geremew ◽  
Selamawit Gebremedhin ◽  
Yohannes Mulugeta ◽  
Tesfaye Assebe Yadeta

Abstract Background Globally, acute respiratory infections are among the leading causes of under-five child mortality, especially in lower-income countries; it is associated with indoor exposure to toxic pollutants from solid biomass fuel. In Ethiopia, 90% of the population utilizes solid biomass fuel; respiratory illness is a leading health problem. However, there is a paucity of nationally representative data on the association of household cooking place and respiratory infections. Besides, evidence on the variability in the infection based on the data collected at different times is limited. Therefore, this study is intended to assess the association of food cooking place with acute respiratory infections and the variability in households and surveys. Methods The current analysis is based on the Ethiopian Demographic and Health Survey data collected in 2005, 2011, and 2016 and obtained via online registration. The association of food cooking place with acute respiratory infection was assessed using multilevel modeling after categorizing all factors into child level and survey level, controlling them in a full model. The analyses accounted for a complex survey design using a Stata command “svy.” Result A total of 30,895 under-five children were included in this study, of which 3677 (11.9%) children had an acute respiratory infection, with 12.7% in 2005, 11.9% in 2011, and 11.1% in 2016. The risk of having an infection in under-five children in households that cooked food outdoors was 44% lower (AOR = 0.56, 95% CI = 0.40, 0.75) compared to those households that cooked the food inside the house. There was a statistically significant difference among the children among surveys to have an acute respiratory infection. Conclusion The risk of having children with acute respiratory infection is lower in the households of cooking food outdoor compared to indoor. The infection difference in different surveys suggests progress in the practices in either food cooking places or the fuel types used that minimize food cooking places location or the fuel types used that minimizes the risk. But, the infection is still high; therefore, measures promoting indoor cooking in a well-ventilated environment with alternative energy sources should take place.


Sign in / Sign up

Export Citation Format

Share Document