immobilization technology
Recently Published Documents


TOTAL DOCUMENTS

59
(FIVE YEARS 26)

H-INDEX

11
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Yunfei Li

With the rapid development of industry, large amounts of untreated industrial waste water and domestic sewage carried heavy metal pollutants below into the water body with enrichment in sediments. When environmental conditions change, enrichment of heavy metals in sludge may be released into the overlying water causing the overlying water quality standard. The agent on immobilization of heavy metals in sludge is to be an extremely promising remediation technology in order to reduce impact on the environment. This test selects Hydroxyapatite and Nano Hydroxyapatite as curing agent and puts it into heavy metal pollution by different proportion. The paper conducts the research of curing agent and optimizes the better one. The paper selected HAP as matrix and CaO and MgO as different additives and studied complex condition of heavy metals in sediment of curing effect. Also the paper conduct the static releases test for pollutants in cured sediment in order to provide technical support for contaminated sediment remediation of heavy metal.


Toxics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 266
Author(s):  
Huijie Zhu ◽  
Qiang Huang ◽  
Shuai Fu ◽  
Xiuji Zhang ◽  
Zhe Yang ◽  
...  

Antimony (Sb) traces in water pose a serious threat to human health due to their negative effects. In this work, nanoscale zero-valent iron (Fe0) supported on activated carbon (nZVI) was employed for eliminating Sb(V) from the drinking water. To better understand the overall process, the effects of several experimental variables, including pH, dissolved oxygen (DO), coexisting ions, and adsorption kinetics on the removal of Sb(V) from the SW were investigated by employing fixed-bed column runs or batch-adsorption methods. A pH of 4.5 and 72 h of equilibrium time were found to be the ideal conditions for drinking water. The presence of phosphate (PO43-), silicate (SiO42-), chromate (CrO42-) and arsenate (AsO43-) significantly decreased the rate of Sb(V) removal, while humic acid and other anions exhibited a negligible effect. The capacity for Sb(V) uptake decreased from 6.665 to 2.433 mg when the flow rate was increased from 5 to 10 mL·min−1. The dynamic adsorption penetration curves of Sb(V) were 116.4% and 144.1% with the weak magnetic field (WMF) in fixed-bed column runs. Considering the removal rate of Sb(V), reusability, operability, no release of Sb(V) after being incorporated into the iron (hydr)oxides structure, it can be concluded that WMF coupled with ZVI would be an effective Sb(V) immobilization technology for drinking water.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8509-8524
Author(s):  
Zeyu Zhang ◽  
Zheng Fan ◽  
Guoliang Zhang ◽  
Lei Qin ◽  
Jie Fang

In recent years, microbial degradation technology has shown broad potential in the fields of agriculture, industry, and environmental protection. However, in practical applications the technology still encounters many problems, such as low bacterial survivability during dynamic operations, the need to remove bacterial liquid, and low tolerance in high-toxic environments, among other issues. Immobilization technology has been developed to overcome such limitations. Microbial strains have been prepared for a specific range of activities utilizing self-fixation or exosome fixation. Immobilization can significantly improve strain density, toxicity tolerance, and bacterial liquid removal. This review first presents the advantages and disadvantages of the current microbial immobilization technologies and then summarizes the properties and characteristics of various carrier materials. The review focuses on how biomass-derived materials have been used as the carriers in new microbial immobilization technologies. The excellent biocompatibility, unique physical structure, and diversified modification methods of biomass-derived materials have shown excellent prospects in the field of microbial immobilization. Finally, microbial immobilization technologies’ potential applications in agriculture, industry, and environmental applications are considered.


BioResources ◽  
2021 ◽  
Vol 16 (4) ◽  
pp. 8509-8524
Author(s):  
Zeyu Zhang ◽  
Zheng Fan ◽  
Guoliang Zhang ◽  
Lei Qin ◽  
Jie Fang

In recent years, microbial degradation technology has shown broad potential in the fields of agriculture, industry, and environmental protection. However, in practical applications the technology still encounters many problems, such as low bacterial survivability during dynamic operations, the need to remove bacterial liquid, and low tolerance in high-toxic environments, among other issues. Immobilization technology has been developed to overcome such limitations. Microbial strains have been prepared for a specific range of activities utilizing self-fixation or exosome fixation. Immobilization can significantly improve strain density, toxicity tolerance, and bacterial liquid removal. This review first presents the advantages and disadvantages of the current microbial immobilization technologies and then summarizes the properties and characteristics of various carrier materials. The review focuses on how biomass-derived materials have been used as the carriers in new microbial immobilization technologies. The excellent biocompatibility, unique physical structure, and diversified modification methods of biomass-derived materials have shown excellent prospects in the field of microbial immobilization. Finally, microbial immobilization technologies’ potential applications in agriculture, industry, and environmental applications are considered.


Chemosphere ◽  
2021 ◽  
pp. 131721
Author(s):  
Yating Jiang ◽  
Fei Yang ◽  
Min Dai ◽  
Imran Ali ◽  
Xing Shen ◽  
...  

2021 ◽  
Vol 17 (5) ◽  
pp. 711-743
Author(s):  
Heping Wang ◽  
Xi Chen ◽  
Mingxing Mao ◽  
Xue Xue

With the development of enzymes immobilization technology and the discover of nanozymes, catalytic therapy exhibited tremendous potential for neurological diseases therapy. In especial, since the discovery of Fe3O4 nanoparticles possessing intrinsic peroxidase-like activity, various nanozymes have been developed and recently started to explore for neurological diseases therapy, such as Alzheimer’s disease, Parkinson’s disease and stroke. By combining the catalytic activities with other properties (such as optical, thermal, electrical, and magnetic properties) of nanomaterials, the multifunctional nanozymes would not only alleviate oxidative and nitrosative stress on the basis of multienzymes-mimicking activity, but also exert positive effects on immunization, inflammation, autophagy, protein aggregation, which provides the foundation for multifaceted treatments. This review will summarize various types of nanocatalysts and further provides a valuable discussion on multifaceted treatment by nanozymes for neurological diseases, which is anticipated to provide an easily accessible guide to the key opportunities and current challenges of the nanozymes-mediated treatments for neurological diseases.


Author(s):  
Hao Gao ◽  
Jiasheng Lu ◽  
Yujia Jiang ◽  
Yan Fang ◽  
Yunhan Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document