scholarly journals Synthesis and Characterization of Hybrid Fiber-Reinforced Polymer by Adding Ceramic Nanoparticles for Aeronautical Structural Applications

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4116
Author(s):  
Omar Talal Bafakeeh ◽  
Walid Mahmoud Shewakh ◽  
Ahmed Abu-Oqail ◽  
Walaa Abd-Elaziem ◽  
Metwally Abdel Ghafaar ◽  
...  

The multiscale hybridization of ceramic nanoparticles incorporated into polymer matrices reinforced with hybrid fibers offers a new opportunity to develop high-performance, multifunctional composites, especially for applications in aeronautical structures. In this study, two different kinds of hybrid fibers were selected, woven carbon and glass fiber, while two different ceramic nanoparticles, alumina (Al2O3) and graphene nanoplatelets (GNPs), were chosen to incorporate into a polymer matrix (epoxy resin). To obtain good dispersion of additive nanoparticles within the resin matrix, the ultrasonication technique was implemented. The microstructure, XRD patterns, hardness, and tensile properties of the fabricated composites were investigated here. Microstructural characterization demonstrated a good dispersion of ceramic nanoparticles of Al2O3 and GNPs in the fabricated composites. The addition of GNPs/Al2O3 nanoparticles as additive reinforcements to the fiber-reinforced polymers (FRPs) induced a significant increase in the hardness and tensile strength. Generally, the FRPs with 3 wt.% nano-Al2O3 enhanced composites exhibit higher tensile strength as compared with all other sets of composites. Particularly, the tensile strength was improved from 133 MPa in the unreinforced specimen to 230 MPa in the reinforced specimen with 3 wt.% Al2O3. This can be attributed to the better distribution of nanoparticles in the resin polymer, which, in turn, induces proper stress transfer from the matrix to the fiber phase. The hybrid mode mechanism depends on the interaction among the mechanical properties of fiber, the physical and chemical evolution of resin, the bonding properties of the fiber/resin interface, and the service environment. Therefore, the hybrid mode of woven carbon and glass fibers at a volume fraction of 64% with additive nanoparticles of GNPs/Al2O3 within the resin was appropriate to produce aeronautical structures with extraordinary properties.

2011 ◽  
Vol 343-344 ◽  
pp. 142-149 ◽  
Author(s):  
Jian Shi ◽  
Kiyoshi Kemmochi ◽  
Li Min Bao

The objective of the present study is to investigate the effect of pyrolysis time and temperature on the mechanical properties of recycled carbon fiber, based on tensile strength measurements, determining the optimum decomposition conditions for carbon fiber-reinforced polymers (CFRPs) by superheated steam. In this research, CFRPs were efficiently depolymerized and reinforced fibers were separated from resin by superheated steam. Tensile strength of fibrous recyclates was measured and compared to that of virgin fiber. Although tensile strength of recycled fibers were litter lower than that of virgin fiber, under some conditions tensile strength of recycled fibers were close to that of virgin fiber. With pyrolysis, some char residue from the polymer remains on the fibers and degrees of char on the recycled fibers were closely examined by scanning electron microscopy.


2017 ◽  
Vol 51 (20) ◽  
pp. 2889-2897 ◽  
Author(s):  
Ali Amiri ◽  
Matthew N Cavalli ◽  
Chad A Ulven

Carbon fiber-reinforced polymers are being used in advanced structural applications such as aerospace, automotive, and naval industries. Therefore, there is a rising need for predicting their fatigue life and improving their fatigue behavior. In this study, the fatigue behavior and changes in flexural modulus of bidirectional carbon fiber-reinforced polymers due to cyclic fully reversed bending are investigated. A unique fixture is designed and manufactured to perform fully reversed four-point bending fatigue tests on (0 °/90 °)15 carbon/polyester specimens with a stress ratio of R = −1 and frequency of 5 Hz. The expected downward trend in fatigue life with increasing maximum applied stress was observed in the S–N curves of samples. Based on the decay in the flexural modulus of the specimens, a modified exponential model is proposed to predict the life of carbon fiber-reinforced polymers under fully reversed bending. The empirical constants in the model are calculated based on the results of experiments. The model is applied to predict the fatigue life of the samples that did not fail during the tests and cycle-to-failure of the specimens are found.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4520
Author(s):  
Salman Pervaiz ◽  
Taimur Ali Qureshi ◽  
Ghanim Kashwani ◽  
Sathish Kannan

Composite materials are a combination of two or more types of materials used to enhance the mechanical and structural properties of engineering products. When fibers are mixed in the polymeric matrix, the composite material is known as fiber-reinforced polymer (FRP). FRP materials are widely used in structural applications related to defense, automotive, aerospace, and sports-based industries. These materials are used in producing lightweight components with high tensile strength and rigidity. The fiber component in fiber-reinforced polymers provides the desired strength-to-weight ratio; however, the polymer portion costs less, and the process of making the matrix is quite straightforward. There is a high demand in industrial sectors, such as defense and military, aerospace, automotive, biomedical and sports, to manufacture these fiber-reinforced polymers using 3D printing and additive manufacturing technologies. FRP composites are used in diversified applications such as military vehicles, shelters, war fighting safety equipment, fighter aircrafts, naval ships, and submarine structures. Techniques to fabricate composite materials, degrade the weight-to-strength ratio and the tensile strength of the components, and they can play a critical role towards the service life of the components. Fused deposition modeling (FDM) is a technique for 3D printing that allows layered fabrication of parts using thermoplastic composites. Complex shape and geometry with enhanced mechanical properties can be obtained using this technique. This paper highlights the limitations in the development of FRPs and challenges associated with their mechanical properties. The future prospects of carbon fiber (CF) and polymeric matrixes are also mentioned in this study. The study also highlights different areas requiring further investigation in FDM-assisted 3D printing. The available literature on FRP composites is focused only on describing the properties of the product and the potential applications for it. It has been observed that scientific knowledge has gaps when it comes to predicting the performance of FRP composite parts fabricated under 3D printing (FDM) techniques. The mechanical properties of 3D-printed FRPs were studied so that a correlation between the 3D printing method could be established. This review paper will be helpful for researchers, scientists, manufacturers, etc., working in the area of FDM-assisted 3D printing of FRPs.


2022 ◽  
Vol 58 (4) ◽  
pp. 28-36
Author(s):  
Velmurugan Natarajan ◽  
Ravi Samraj ◽  
Jayabalakrishnan Duraivelu ◽  
Prabhu Paulraj

This study aims to reveal the consequence of thickness reinforcement on Fiber Laminates (Polyester Resin, Glass Fiber, Aluminum, and Bentonite) and to see if it can enhance the mechanical properties and resistance of laminates. Glass fiber reinforced polymer composites have recently been used in automotive, aerospace, and structural applications where they will be safe for the application s unique shape. Hand layup was used to fabricate three different combinations, including Aluminium /Glass fiber reinforced polyester composites (A/GFRP), Bentonite/Glass fiber reinforced polyester composites (B/GFRP), and Aluminium&Bentonie/Glass fiber reinforced polyester composites (AB/GFRP). Results revealed that AB/GFRP had better tensile strength, flexural strength, and hardness than GFRP and A/GFRP. Under normal atmospheric conditions and after exposure to boiling water, hybrid Aluminium&Bentonite and glass fiber-reinforced nanocomposites have improved mechanical properties than other hybrid composites. After exposure to temperature, the flexural strength, tensile strength and stiffness of AB/GFRP Composites are 40 % higher than A/GFRP and 17.44% higher than B/GFRP Composites.


2014 ◽  
Vol 783-786 ◽  
pp. 1518-1523 ◽  
Author(s):  
Yoshihisa Harada ◽  
Mayu Muramatsu ◽  
Takayuki Suzuki ◽  
Michiteru Nishino ◽  
Hiroyuki Niino

Carbon fiber-reinforced plastics (CFRP) composite is most attractive materials to reduce the weight of transportations. To increase the production volume and the efficiency in the field of CFRP component, fast, highly precise and cost-efficient technologies are required. Although laser cutting meets these requirements, it is not used because of insufficient knowledge about the effect of thermal damage on the material behavior. In this study, the effect of several cutting processes on the static tensile strength and the fatigue strength was evaluated for CFRP consisting of thermoset resin matrix and carbon fibers. The CFRP was cut using two different-type of lasers; a CO2 gas laser and single-mode fiber lasers, and a conventional mechanical tool. The mechanical cutting specimen produced a cut of high quality. While, the laser cutting specimens clearly showed a heat-affected zone (HAZ). The static tensile strength and the fatigue strength by laser cutting specimens clearly decreased in comparison with mechanical cutting specimen. The laser cutting specimen exhibited a linear dependency of the tensile strength on the HAZ, indicating that the main effect resulted from thermal destruction of CFRP within the HAZ.


2014 ◽  
Vol 922 ◽  
pp. 838-843
Author(s):  
Yoshiki Yamazaki ◽  
Hiroaki Takei ◽  
Masae Kanda ◽  
Keisuke Iwata ◽  
Michelle Salvia ◽  
...  

Carbon fiber reinforced polymers (CFRP), which are typical composite materials, and have been applied as light structural materials with high strength [1, 2]. The further strengthening has been always expected to develop high speed transports with small energy consumption. Although influences of electron beam (EB) irradiation with high energy on the fracture toughness of carbon cross of carbon fibers in thermo-hardened epoxy resin matrix (thermo-hardened CFRP) have been often reported [3], no one has succeeded the strengthening of CFRP irradiated by electron beam. On the other hand, the homogeneous low voltage electron beam irradiation (HLEBI) often induces not only the hardening, high wear resistance and sterilization for practical use of polymer, but also the mist resistance [4–6]. In addition, the irradiation has improved not only the bending fracture strain of carbon fiber [7, 8], but also the deformation resistivity, strength and fracture strain on static tensile test [9]. In our recent research, it has succeeded that the EB-irradiation also enhances the fracture stress and fracture strain of static bending test of thermo-hardened CFRP [10]. Furthermore, the improvement of impact value of thermo-hardened CFRP by EB-irradiation has been also reported to apply to high-speed transports [11]. However, the production rate of thermo-hardened CFRP has been serious problem in mass production.


2020 ◽  
Vol 853 ◽  
pp. 171-176
Author(s):  
Shuo Zhang ◽  
Chun Lin Liu ◽  
Wen Zhu ◽  
Meng Xiong Tang ◽  
He Song Hu ◽  
...  

A series of tests were conducted to investigate the mechanical performances of aramid fiber reinforced polymer (AFRP) and its epoxy resin matrix after 0, 20, 40, 60 and 80 freeze-thaw cycles in the dry air, respectively. After a given number of freeze-thaw cycles, the residual tensile strength and elastic modulus of AFRP specimens were measured, and the lap-shear strength of epoxy resin adhesive specimens was gained. Test results show that: (1) Variation of the elastic modulus of AFRP with the increasing of the freeze-thaw cycles exhibits the same tendency as the tensile strength did. They increase in the first 20 to 40 cycles and then decrease till the end of 80 cycles; (2) The tensile strength and elastic modulus of AFRP decreases by 5.1% and 8.2%, respectively, after 80 cycles as compared with that kept in the laboratory environments. However, the effect of the freeze-thaw cycling in the dry air on the tensile properties of CFRP is very limited within 80 cycles; (3) The freeze-thaw cycling in the dry air of this study has an adverse effect on the adhesive property of the epoxy resin, which could be regarded as the evidence for the degradation of the interface between aramid/carbon fiber and matrix.


Polymers ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2325
Author(s):  
Alexandre Tugirumubano ◽  
Sun Ho Go ◽  
Hee Jae Shin ◽  
Lee Ku Kwac ◽  
Hong Gun Kim

In this work, we aimed to manufacture and characterize carbon-fiber–polymer–metal-particles magnetic composites with a sandwichlike structure. The composites were manufactured by stacking the plain woven carbon fiber prepregs (or carbon-fiber-reinforced polymers (CFRP)) and layers of the FeSi particles. The layer of FeSi particles were formed by evenly distributing the FeSi powder on the surface of carbon fiber prepreg sheet. The composites were found to have better magnetic properties when the magnetic field were applied in in-plane (0°) rather than in through-thickness (90°), and the highest saturation magnetization of 149.71 A.m2/kg was achieved. The best inductance and permeability of 12.2 μH and 13.08 were achieved. The composites obviously exhibited mechanical strength that was good but lower than that of CFRP composite. The lowest tensile strength and lowest flexural strength were 306.98 MPa and 855.53 MPa, which correspond to 39.58% and 59.83% of the tensile strength and flexural strength of CFRP (four layers), respectively.


Sign in / Sign up

Export Citation Format

Share Document