benthic food web
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 13)

H-INDEX

25
(FIVE YEARS 3)

Ecosphere ◽  
2021 ◽  
Vol 12 (6) ◽  
Author(s):  
Jessica V. Trout‐Haney ◽  
Kathryn L. Cottingham

Author(s):  
Isak Holmerin ◽  
Louise Kiel Jensen ◽  
Tanya Hevrøy ◽  
Clare Bradshaw

2020 ◽  
Vol 54 (4) ◽  
pp. 1135-1143
Author(s):  
C. Ptatscheck ◽  
S. Gehner ◽  
W. Traunspurger

Abstract Meiofaunal organisms are the predominant metazoans in benthic systems and important members of the benthic food web. They are defined by mesh size and specifically by their retention on a sieve with a 44-µm mesh size. In this study, we examined the accuracy of this standard collection method by counting the number of meiobenthic individuals, life stages and nematode species in a sample. A filter cascade consisting of five different mesh sizes (41 µm, 30 µm, 20 µm, 10 µm and 1 µm) was used to fractionate a natural freshwater meiobenthic collection, and the individuals in each fraction were then counted. In line with the current definition of meiofauna, all tardigrades, microcrustaceans, chironomids and oligochaetes were retained by the largest mesh size, whereas 9% of the rotifers were first retained on the 30-µm meshes. For nematodes, 23% were not retained on the 41-µm meshes and individuals were collected even from the 1-µm fraction. With declining mesh size, the yield of retained nematodes increased, the age structure shifted to juveniles, evenness declined, and the species composition changed. As all of these findings were significant, this study therefore shows that the current definition of meiofauna is not sufficient to encompass the entire spectrum of meiofauna present in a sample and may result in misleading assessments of the diversity and composition of these organisms. We therefore propose that, especially for nematodes, a definition based on a smaller mesh size (at least 20 µm) is more appropriate.


Polar Biology ◽  
2020 ◽  
Vol 43 (5) ◽  
pp. 423-433
Author(s):  
Christopher B. Anderson ◽  
Marina Tagliaferro ◽  
Aaron Fisk ◽  
Amy D. Rosemond ◽  
Marisol L. Sanchez ◽  
...  

Elem Sci Anth ◽  
2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Gustavo Yunda-Guarin ◽  
Thomas A. Brown ◽  
Loïc N. Michel ◽  
Blanche Saint-Béat ◽  
Rémi Amiraux ◽  
...  

Benthic organisms depend primarily on seasonal pulses of organic matter from primary producers. In the Arctic, declines in sea ice due to warming climate could lead to changes in this food supply with as yet unknown effects on benthic trophic dynamics. Benthic consumer diets and food web structure were studied in a seasonally ice-covered region of Baffin Bay during spring 2016 at stations ranging in depth from 199 to 2,111 m. We used a novel combination of highly branched isoprenoid (HBI) lipid biomarkers and stable isotope ratios (δ13C, δ15N) to better understand the relationship between the availability of carbon sources in spring on the seafloor and their assimilation and transfer within the benthic food web. Organic carbon from sea ice (sympagic carbon [SC]) was an important food source for benthic consumers. The lipid biomarker analyses revealed a high relative contribution of SC in sediments (mean SC% ± standard deviation [SD] = 86% ± 16.0, n = 17) and in benthic consumer tissues (mean SC% ± SD = 78% ± 19.7, n = 159). We also detected an effect of sea-ice concentration on the relative contribution of SC in sediment and in benthic consumers. Cluster analysis separated the study region into three different zones according to the relative proportions of SC assimilated by benthic macrofauna. We observed variation of the benthic food web between zones, with increases in the width of the ecological niche in zones with less sea-ice concentration, indicating greater diversity of carbon sources assimilated by consumers. In zones with greater sea-ice concentration, the higher availability of SC increased the ecological role that primary consumers play in driving a stronger transfer of nutrients to higher trophic levels. Based on our results, SC is an important energy source for Arctic deep-sea benthos in Baffin Bay, such that changes in spring sea-ice phenology could alter benthic food-web structure.


Sign in / Sign up

Export Citation Format

Share Document