scholarly journals Super-resolution imaging: when biophysics meets nanophotonics

Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. Femius Koenderink ◽  
Roman Tsukanov ◽  
Jörg Enderlein ◽  
Ignacio Izeddin ◽  
Valentina Krachmalnicoff

Abstract Probing light–matter interaction at the nanometer scale is one of the most fascinating topics of modern optics. Its importance is underlined by the large span of fields in which such accurate knowledge of light–matter interaction is needed, namely nanophotonics, quantum electrodynamics, atomic physics, biosensing, quantum computing and many more. Increasing innovations in the field of microscopy in the last decade have pushed the ability of observing such phenomena across multiple length scales, from micrometers to nanometers. In bioimaging, the advent of super-resolution single-molecule localization microscopy (SMLM) has opened a completely new perspective for the study and understanding of molecular mechanisms, with unprecedented resolution, which take place inside the cell. Since then, the field of SMLM has been continuously improving, shifting from an initial drive for pushing technological limitations to the acquisition of new knowledge. Interestingly, such developments have become also of great interest for the study of light–matter interaction in nanostructured materials, either dielectric, metallic, or hybrid metallic-dielectric. The purpose of this review is to summarize the recent advances in the field of nanophotonics that have leveraged SMLM, and conversely to show how some concepts commonly used in nanophotonics can benefit the development of new microscopy techniques for biophysics. To this aim, we will first introduce the basic concepts of SMLM and the observables that can be measured. Then, we will link them with their corresponding physical quantities of interest in biophysics and nanophotonics and we will describe state-of-the-art experiments that apply SMLM to nanophotonics. The problem of localization artifacts due to the interaction of the fluorescent emitter with a resonant medium and possible solutions will be also discussed. Then, we will show how the interaction of fluorescent emitters with plasmonic structures can be successfully employed in biology for cell profiling and membrane organization studies. We present an outlook on emerging research directions enabled by the synergy of localization microscopy and nanophotonics.

2021 ◽  
Vol 22 (4) ◽  
pp. 1903
Author(s):  
Ivona Kubalová ◽  
Alžběta Němečková ◽  
Klaus Weisshart ◽  
Eva Hřibová ◽  
Veit Schubert

The importance of fluorescence light microscopy for understanding cellular and sub-cellular structures and functions is undeniable. However, the resolution is limited by light diffraction (~200–250 nm laterally, ~500–700 nm axially). Meanwhile, super-resolution microscopy, such as structured illumination microscopy (SIM), is being applied more and more to overcome this restriction. Instead, super-resolution by stimulated emission depletion (STED) microscopy achieving a resolution of ~50 nm laterally and ~130 nm axially has not yet frequently been applied in plant cell research due to the required specific sample preparation and stable dye staining. Single-molecule localization microscopy (SMLM) including photoactivated localization microscopy (PALM) has not yet been widely used, although this nanoscopic technique allows even the detection of single molecules. In this study, we compared protein imaging within metaphase chromosomes of barley via conventional wide-field and confocal microscopy, and the sub-diffraction methods SIM, STED, and SMLM. The chromosomes were labeled by DAPI (4′,6-diamidino-2-phenylindol), a DNA-specific dye, and with antibodies against topoisomerase IIα (Topo II), a protein important for correct chromatin condensation. Compared to the diffraction-limited methods, the combination of the three different super-resolution imaging techniques delivered tremendous additional insights into the plant chromosome architecture through the achieved increased resolution.


Author(s):  
Jelena Vučković

Quantum dots in optical nanocavities are interesting as a test-bed for fundamental studies of light–matter interaction (cavity quantum electrodynamics, QED), as well as an integrated platform for information processing. As a result of the strong field localization inside sub-cubic-wavelength volumes, these dots enable very large emitter–field interaction strengths. In addition to their use in the study of new regimes of cavity QED, they can also be employed to build devices for quantum information processing, such as ultrafast quantum gates, non-classical light sources, and spin–photon interfaces. Beside quantum information systems, many classical information processing devices, such as lasers and modulators, benefit greatly from the enhanced light–matter interaction in such structures. This chapter gives an introduction to quantum dots, photonic crystal resonators, cavity QED, and quantum optics on this platform, as well as possible device applications.


2019 ◽  
Vol 16 (5) ◽  
pp. 387-395 ◽  
Author(s):  
Daniel Sage ◽  
Thanh-An Pham ◽  
Hazen Babcock ◽  
Tomas Lukes ◽  
Thomas Pengo ◽  
...  

2018 ◽  
Author(s):  
Daniel Sage ◽  
Thanh-An Pham ◽  
Hazen Babcock ◽  
Tomas Lukes ◽  
Thomas Pengo ◽  
...  

ABSTRACTWith the widespread uptake of 2D and 3D single molecule localization microscopy, a large set of different data analysis packages have been developed to generate super-resolution images. To guide researchers on the optimal analytical software for their experiments, we have designed, in a large community effort, a competition to extensively characterise and rank these options. We generated realistic simulated datasets for popular imaging modalities – 2D, astigmatic 3D, biplane 3D, and double helix 3D – and evaluated 36 participant packages against these data. This provides the first broad assessment of 3D single molecule localization microscopy software, provides a holistic view of how the latest 2D and 3D single molecule localization software perform in realistic conditions, and ultimately provides insight into the current limits of the field.


Author(s):  
Fabian U. Zwettler ◽  
Sebastian Reinhard ◽  
Davide Gambarotto ◽  
Toby D. M. Bell ◽  
Virginie Hamel ◽  
...  

AbstractExpansion microscopy (ExM) enables super-resolution fluorescence imaging of physically expanded biological samples with conventional microscopes. By combining expansion microscopy (ExM) with single-molecule localization microscopy (SMLM) it is potentially possible to approach the resolution of electron microscopy. However, current attempts to combine both methods remained challenging because of protein and fluorophore loss during digestion or denaturation, gelation, and the incompatibility of expanded polyelectrolyte hydrogels with photoswitching buffers. Here we show that re-embedding of expanded hydrogels enables dSTORM imaging of expanded samples and demonstrate that post-labeling ExM resolves the current limitations of super-resolution microscopy. Using microtubules as a reference structure and centrioles, we demonstrate that post-labeling Ex-SMLM preserves ultrastructural details, improves the labeling efficiency and reduces the positional error arising from linking fluorophores into the gel thus paving the way for super-resolution imaging of immunolabeled endogenous proteins with true molecular resolution.


2021 ◽  
Author(s):  
Nicolas Lardon ◽  
Lu Wang ◽  
Aline Tschanz ◽  
Philipp Hoess ◽  
Mai Tran ◽  
...  

Rhodamines are the most important class of fluorophores for applications in live-cell fluorescence microscopy. This is mainly because rhodamines exist in a dynamic equilibrium between a fluorescent zwitterion and a non-fluorescent but cell-permeable spirocyclic form. Different imaging applications require different positions of this dynamic equilibrium, which poses a challenge for the design of suitable probes. We describe here how the conversion of the ortho-carboxy moiety of a given rhodamine into substituted acyl benzenesulfonamides and alkylamides permits the systematic tuning of the equilibrium of spirocyclization with unprecedented accuracy and over a large range. This allows to transform the same rhodamine into either a highly fluorogenic and cell-permeable probe for live-cell stimulated emission depletion (STED) microscopy, or into a spontaneously blinking dye for single molecule localization microscopy (SMLM). We used this approach to generate differently colored probes optimized for different labeling systems and imaging applications.


2017 ◽  
Author(s):  
Hazen P. Babcock

ABSTRACTIn this work we explore the use of industrial grade CMOS cameras for single molecule localization microscopy (SMLM). We show that the performance of these cameras in single imaging plane SMLM applications is comparable to much more expensive scientific CMOS (sCMOS) cameras. We show that these cameras can be used in more demanding biplane, multiplane and spectrally resolved SMLM applications. The 10-40× reduction in camera cost makes it practical to build SMLM setups with 4 or more cameras. In addition we provide open-source software for simultaneously controlling multiple CMOS cameras and for the reduction of the movies that are acquired to super-resolution images.


Sign in / Sign up

Export Citation Format

Share Document