The influence of zinc compounds on thermal stability and flame retardancy of wood flour polyvinyl chloride composites

2022 ◽  
Vol 320 ◽  
pp. 126203
Author(s):  
Yiqun Fang ◽  
Aojing Xue ◽  
Fengqiang Wang ◽  
Zhijun Zhang ◽  
Yongming Song ◽  
...  
2019 ◽  
pp. 089270571986940
Author(s):  
Chuigen Guo ◽  
Ran Chen ◽  
Liping Li

The main aim of this study was to evaluate the thermal degradation and flame retardancy of straw flour (SF)-polypropylene (PP) composites and wood flour (WF)-PP composites. Biomass silica exists in SF, despite only 18 wt% loading of ammonium polyphosphate (APP); the APP in combination with biomass silica can effectively improve the flame retardancy on total heat release, heat release rate (HRR), mass loss rate, time to ignition (TTI), and limited oxygen index; it can obtain UL-94 V-0 rating, reduce the average and peak HRR by 44% and 41%, respectively, and increase the TTI by 8%. It attributes to the interaction effect between biomass silica in SF and APP, which more effectively enhances the thermal stability of the SF/PP/APP composites at high temperature and increases the char residue. The silica could form an intercalated network in char structure and then boost the physical integrity. The enhanced physical integrity and thermal stability lead to an effectively synergetic effect on flame retardancy of SF/PP/APP composites.


2019 ◽  
Vol 41 (3) ◽  
pp. 848-857
Author(s):  
Guanggong Zong ◽  
Jianxiu Hao ◽  
Xiaolong Hao ◽  
Yiqun Fang ◽  
Yongming Song ◽  
...  

Holzforschung ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ping Li ◽  
Yuan Zhang ◽  
Yingfeng Zuo ◽  
Yiqiang Wu ◽  
Guangming Yuan ◽  
...  

AbstractInorganic impregnation strengthening of Chinese fir wood was carried out to improve the strength, dimensional stability, flame retardancy, and smoke suppression of Chinese fir wood. Sodium silicate was used as reinforcement, a sulfate and phosphate mixtures were used as a curing agent, and Chinese fir wood was reinforced by the respiratory impregnation method (RIM) that imitating human respiration and vacuum progressive impregnation method (VPIM). The weight percentage gain (WPG), density increase rate, distribution of modifier, bending strength (BS), compressive strength (CS), hardness, and water resistance of unreinforced Chinese fir wood from the VPIM and RIM were compared. It was found that RIM could effectively open the aspirated pits in Chinese fir wood, so its impregnation effect, strengthen effect and dimension stabilization effects were the best. RIM-reinforced Chinese fir wood was filled with silicate both horizontally and vertically. At the same time, the transverse permeability of silicate through aspirated pits was significantly improved. The chemical structure, crystalline structure, flame retardancy, smoke suppression, and thermal stability of VPIM- and RIM-reinforced Chinese fir wood were characterized by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), cone calorimeter (CONE), and thermogravimetric analysis (TGA). The results indicated that although the crystallinity of RIM-reinforced Chinese fir wood decreased the most, more chemical crosslinking and hydrogen bonding were formed in the wood, and the strengthen effect was still the best. Compared with VPIM-reinforced Chinese fir wood, RIM-reinforced Chinese fir wood had lower heat release rate (HRR), peak-HRR, mean-HRR, total heat release (THR), smoke production rate (SPR), and total smoke production (TSP), higher thermal decomposition temperature and residual rate. It was indicated that RIM-reinforced Chinese fir wood was a better flame retardant, and has a smoke suppression effect, thermal stability, and safety performance in the case of fire.


2021 ◽  
pp. 009524432110290
Author(s):  
Mukaddes Sevval Cetin ◽  
Ozan Toprakci ◽  
Omer Suat Taskin ◽  
Abdullah Aksu ◽  
Hatice Aylin Karahan Toprakci

This study focuses on the fabrication and characterization of vermiculite-filled flexible polymer composites. Exfoliated vermiculite was incorporated into triblock thermoplastic elastomer copolymer, styrene- b-(ethylene- co-butylene)- b-styrene (SEBS), at various levels from 1 to 15 wt% by a high shear mixer. The composite films were obtained by the combination of solvent casting and compression molding. The morphological, structural, thermal, and mechanical properties and contact angle of the composites were determined. Some micro-morphological differences were observed between the samples and the difference was assumed to be caused by high shear mixing and filler concentration. High shear mixing was found effective in terms of the detachment of vermiculite layers at all concentrations. However, at low filler loading, that behavior was more obvious. At 1 wt% filler concentration, mechanical properties increased that was probably caused by good filler-matrix interaction stemmed from smaller particle size. At higher vermiculite concentrations, fillers found to show agglomerations that led to a decrease in mechanical strength and strain at break. Elastic and secant modulus showed an increasing trend. Contact angle measurements were carried out to determine the oleophilic character of the samples. An increase in the vermiculite content resulted in higher oleophilic character and the lowest contact angle was obtained at 15 wt% VMT loading. In addition to these, thermal stability, thermal dimensional stability and flame retardancy were improved by the incorporation of VMT. 15 wt% vermiculite-filled sample showed the best performance in terms of thermal stability and flame retardancy.


2016 ◽  
Vol 19 (5) ◽  
pp. 420-428 ◽  
Author(s):  
Wenyan Lyu ◽  
Yihua Cui ◽  
Xujie Zhang ◽  
Jingyao Yuan ◽  
Wei Zhang

Sign in / Sign up

Export Citation Format

Share Document