forest pathogens
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lukas Hunziker ◽  
Mariana Tarallo ◽  
Keiko Gough ◽  
Melissa Guo ◽  
Cathy Hargreaves ◽  
...  

AbstractForests are under threat from pests, pathogens, and changing climate. A major forest pathogen worldwide is the hemibiotroph Dothistroma septosporum, which causes dothistroma needle blight (DNB) of pines. While D. septosporum uses effector proteins to facilitate host infection, it is currently unclear whether any of these effectors are recognised by immune receptors to activate the host immune system. Such information is needed to identify and select disease resistance against D. septosporum in pines. We predicted and investigated apoplastic D. septosporum candidate effectors (DsCEs) using bioinformatics and plant-based experiments. We discovered DsCEs that trigger cell death in the angiosperm Nicotiana spp., indicative of a hypersensitive defence response and suggesting their recognition by immune receptors in non-host plants. In a first for foliar forest pathogens, we developed a novel protein infiltration method to show that tissue-cultured pine shoots can respond with a cell death response to a DsCE, as well as to a reference cell death-inducing protein. The conservation of responses across plant taxa suggests that knowledge of pathogen–angiosperm interactions may also be relevant to pathogen–gymnosperm interactions. These results contribute to our understanding of forest pathogens and may ultimately provide clues to disease immunity in both commercial and natural forests.


2021 ◽  
Vol 4 ◽  
Author(s):  
Anna Maria Vettraino ◽  
Alberto Santini

Italy has an increasing part of its territory covered by forest, particularly prone to invasion by invasive forest pathogens (IFPs) owing to the presence of many different habitats and climates. To be effective, any preventive or management tools to prevent the arrival and establishment of IFPs must be included in the framework of phytosanitary legislation. The European Union has an open-door phytosanitary system meaning that any consignment that is not specifically regulated can enter. Increasing evidence of the limitations and subsequent gaps in biosecurity with the current system. Learning from the recent outbreak of Xylella fastidiosa, we provide comments and suggestions to fill the gaps and improve the phytosanitary system in Italy.


2021 ◽  
Author(s):  
Lukas Hunziker ◽  
Mariana Tarallo ◽  
Keiko Gough ◽  
Melissa Guo ◽  
Cathy Hargreaves ◽  
...  

Forests are under threat from pests, pathogens, and changing climate. One of the major forest pathogens worldwide is Dothistroma septosporum, which causes dothistroma needle blight (DNB) of pines. D. septosporum is a hemibiotrophic fungus related to well-studied Dothideomycete pathogens, such as Cladosporium fulvum. These pathogens use small secreted proteins, termed effectors, to facilitate the infection of their hosts. The same effectors, however, can be recognised by plants carrying corresponding immune receptors, resulting in resistance responses. Hence, effectors are increasingly being exploited to identify and select disease resistance in crop species. In gymnosperms, however, such research is scarce. We predicted and investigated apoplastic D. septosporum candidate effectors (DsCEs) using bioinformatics and plant-based experiments. We discovered secreted proteins that trigger cell death in the angiosperm Nicotiana spp., suggesting their recognition by immune receptors in non-host plants. In a first for foliar forest pathogens, we also developed a novel protein infiltration method to show that tissue-cultured pine shoots can respond with a cell death response to one of our DsCEs, as well as to a reference cell death-inducing protein. These results contribute to our understanding of forest pathogens and may ultimately provide clues to disease immunity in both commercial and natural forests.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 854
Author(s):  
Lauma Brūna ◽  
Guglielmo Lione ◽  
Kristīne Kenigsvalde ◽  
Natālija Burņeviča ◽  
Astra Zaļuma ◽  
...  

Stumps play a pivotal role in the epidemiology of the fungal forest pathogens Heterobasidion spp. because they are the main courts of primary airborne infections. The aims of this study were (i) to determine the susceptibility of seven tree species (i.e., Larix sibirica, Picea abies, Picea sitchensis, Pinus contorta, Pinus strobus, Pinus sylvestris and Pseudotsuga menziesii) to primary infection by H. annosum and H. parviporum through comparative inoculation experiments of conidia on wood discs in controlled conditions; (ii) to compare the susceptibility of wood discs of the same tree species to natural airborne infections in two Latvian Norway spruce forest stands infested either by H. annosum or H. parviporum; (iii) to explore the rates of infection of wood discs at increasing distances from spore sources in these two forests to make inferences on the range of spores dispersal. Results obtained by spraying wood discs with conidial suspensions in controlled conditions are in agreement with those obtained by exposing wood discs to the natural airborne inoculum in the forests, as clearly supported by the significant correlation (r = 0.79; p < 0.05) between the two sets of data. Susceptibility was highest in Pinus species, followed by P. abies and P. sitchensis. Susceptibility was lowest for L. sibirica and P. menziesii. The area colonized by Heterobasidion spp. in the sapwood of wood discs was much greater than that colonized in the heartwood. A sharp decrease in the rate of infection of wood discs with distance from spore sources (i.e., fruiting bodies) was observed, further confirming the importance of local spore sources in the epidemiology of Heterobasidion spp. Taken together, these findings could help designing tactics to manage these fungal forest pathogens.


NeoBiota ◽  
2020 ◽  
Vol 62 ◽  
pp. 301-332 ◽  
Author(s):  
Trudy Paap ◽  
Michael J. Wingfield ◽  
Treena I. Burgess ◽  
Joseph M. Hulbert ◽  
Alberto Santini

Invasive alien species are widely recognised as significant drivers of global environmental change, with far reaching ecological and socio-economic impacts. The trend of continuous increases in first records, with no apparent sign of saturation, is consistent across all taxonomic groups. However, taxonomic biases exist in the extent to which invasion processes have been studied. Invasive forest pathogens have caused, and they continue to result in dramatic damage to natural forests and woody ecosystems, yet their impacts are substantially underrepresented in the invasion science literature. Conversely, most studies of forest pathogens have been undertaken in the absence of a connection to the frameworks developed and used to study biological invasions. We believe this is, in part, a consequence of the mechanistic approach of the discipline of forest pathology; one that has been inherited from the broader discipline of plant pathology. Rather than investigating the origins of, and the processes driving the arrival of invasive microorganisms, the focus of pathologists is generally to investigate specific interactions between hosts and pathogens, with an emphasis on controlling the resulting disease problems. In contrast, central to the field of invasion science, which finds its roots in ecology, is the development and testing of general concepts and frameworks. The lack of knowledge of microbial biodiversity and ecology, speciation and geographic origin present challenges in understanding invasive forest pathogens under existing frameworks, and there is a need to address this shortfall. Advances in molecular technologies such as gene and genome sequencing and metagenomics studies have increased the “visibility” of microorganisms. We consider whether these technologies are being adequately applied to address the gaps between forest pathology and invasion science. We also interrogate the extent to which the two fields stand to gain by becoming more closely linked.


Sign in / Sign up

Export Citation Format

Share Document