scholarly journals Inferences on the Susceptibility of Wood of Different Tree Species to Heterobasidion annosum Sensu Lato (Fr.) Bref. Primary Infections and on the Range of Pathogen Spores Dispersal

Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 854
Author(s):  
Lauma Brūna ◽  
Guglielmo Lione ◽  
Kristīne Kenigsvalde ◽  
Natālija Burņeviča ◽  
Astra Zaļuma ◽  
...  

Stumps play a pivotal role in the epidemiology of the fungal forest pathogens Heterobasidion spp. because they are the main courts of primary airborne infections. The aims of this study were (i) to determine the susceptibility of seven tree species (i.e., Larix sibirica, Picea abies, Picea sitchensis, Pinus contorta, Pinus strobus, Pinus sylvestris and Pseudotsuga menziesii) to primary infection by H. annosum and H. parviporum through comparative inoculation experiments of conidia on wood discs in controlled conditions; (ii) to compare the susceptibility of wood discs of the same tree species to natural airborne infections in two Latvian Norway spruce forest stands infested either by H. annosum or H. parviporum; (iii) to explore the rates of infection of wood discs at increasing distances from spore sources in these two forests to make inferences on the range of spores dispersal. Results obtained by spraying wood discs with conidial suspensions in controlled conditions are in agreement with those obtained by exposing wood discs to the natural airborne inoculum in the forests, as clearly supported by the significant correlation (r = 0.79; p < 0.05) between the two sets of data. Susceptibility was highest in Pinus species, followed by P. abies and P. sitchensis. Susceptibility was lowest for L. sibirica and P. menziesii. The area colonized by Heterobasidion spp. in the sapwood of wood discs was much greater than that colonized in the heartwood. A sharp decrease in the rate of infection of wood discs with distance from spore sources (i.e., fruiting bodies) was observed, further confirming the importance of local spore sources in the epidemiology of Heterobasidion spp. Taken together, these findings could help designing tactics to manage these fungal forest pathogens.

1999 ◽  
Vol 29 (9) ◽  
pp. 1374-1382 ◽  
Author(s):  
K Dave Coates ◽  
Philip J Burton

Insights into field-planted conifer seedling growth were gained by fitting height and diameter growth to relative irradiance over the growing season using Michaelis-Menten functions. There was little difference among tree species (Abies lasiocarpa (Hook.) Nutt., Picea glauca (Moench) Voss × Picea sitchensis (Bong.) Carr., Pinus contorta Dougl. ex Loud., Thuja plicata Donn ex D. Don, Tsuga heterophylla (Raf.) Sarg.) in response to ambient light. No significant differences in whole-plant compensation points were observed among species but the ranking of species' compensation points was consistent with their shade-tolerance ranking. Five years after planting, total size and recent growth rates varied little among species from low to high light, implying an absence of trade-offs in low- and high-light growth strategies. Thuja plicata had the greatest response to increased light under deep shade (<20% relative irradiance). All species increased growth above 40% relative irradiance, with no clear whole-plant light saturation point evident under field conditions. Growth rates at high light were broadly overlapping and varied considerably within species. As expected,Pinus contorta growth exceeded that of other species above 70% relative irradiance, but it also exhibited high growth rates at low light. Greatest variability among species was at intermediate light levels (30-70% relative irradiance) where careful matching of tree species to light environment can maximize growth rates.


2001 ◽  
Vol 79 (4) ◽  
pp. 389-397 ◽  
Author(s):  
Hugh J Barclay

Leaf angle distributions are important in assessing both the flexibility of a plant's response to differing daily and seasonal sun angles and also the variability in the proportion of total leaf area visible in remotely sensed images. Leaf angle distributions are presented for six conifer species, Abies grandis (Dougl. ex D. Don) Lindl., Thuja plicata Donn. ex D. Don, Tsuga heterophylla (Raf.) Sarg., Pseudotsuga menziesii (Mirb.) Franco, Picea sitchensis (Bong.) Carr. and Pinus contorta Dougl. ex Loud. var. latifolia. The leaf angles were calculated by measuring four foliar quantities, and then the distributions of leaf angles are cast in three forms: distributions of (i) the angle of the long axis of the leaf from the vertical for the range 0–180°; (ii) the angle of the long axis of the leaf for the range 0–90°; and (iii) the angle of the plane of the leaf for the range 0–90°. Each of these are fit to the ellipsoidal distribution to test the hypothesis that leaf angles in conifers are sufficiently random to fit the ellipsoidal distribution. The fit was generally better for planar angles and for longitudinal angles between 0° and 90° than for longitudinal angles between 0° and 180°. The fit was also better for Tsuga heterophylla, Pseudotsuga menziesii, Picea sitchensis, and Pinus contorta than for Abies grandis and Thuja plicata. This is probably because Abies and Thuja are more shade tolerant than the other species, and so the leaves in Abies and Thuja are preferentially oriented near the horizontal and are much less random than for the other species. Comparisons of distributions on individual twigs, whole branches, entire trees, and groups of trees were done to test the hypothesis that angle distributions will depend on scale, and these comparisons indicated that the apparent randomness and goodness-of-fit increased on passing to each larger unit (twigs up to groups of trees).Key words: conifer, leaf angles, ellipsoidal distribution.


2019 ◽  
Vol 49 (8) ◽  
pp. 969-977 ◽  
Author(s):  
A. Zaļuma ◽  
I. Muižnieks ◽  
T. Gaitnieks ◽  
N. Burņeviča ◽  
Ā. Jansons ◽  
...  

This study investigated the origins and spread patterns of Heterobasidion root disease in three Pinus contorta Dougl. ex Loudon plantations established on forest and agricultural land and subjected to three different management scenarios. Trees with decline symptoms and stumps remaining from the previous rotation were sampled for fungal isolations. Ten isolates of Heterobasidion parviporum Niemelä & Korhonen and 425 of Heterobasidion annosum (Fr.) Bref. were tested for clonality through somatic compatibility tests. The following conclusions were reached: (i) P. contorta is highly susceptible to H. annosum and H. parviporum and both pathogens cause dieback of P. contorta; (ii) H. annosum from previous-rotation P. sylvestris stumps can effectively transfer to P. contorta; (iii) the pathogens may form constantly expanding territorial clones; (iv) basidiospores of both pathogens colonise stumps of P. contorta (primary infections); (v) H. parviporum clones expanded more slowly than clones of H. annosum; (vi) clonal spread proceeded more quickly from stumps with established secondary infections than from stumps with primary infections; (vii) H. annosum can persist in pine stumps for at least 26 years; and (viii) stump treatment should be considered to control Heterobasidion primary infections.


2000 ◽  
Vol 30 (9) ◽  
pp. 1341-1352 ◽  
Author(s):  
C E Prescott ◽  
L Vesterdal ◽  
J Pratt ◽  
K H Venner ◽  
L M de Montigny ◽  
...  

We examined the extent to which nutrient concentrations and C and N mineralization rates in forests floors under different tree species are predictable from the chemistry of foliar litter and its rate of decomposition. We studied replicated single species plantations of western redcedar (Thuja plicata Donn ex D. Don), western hemlock (Tsuga heterophylla (Raf.) Sarg.), Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco), and Sitka spruce (Picea sitchensis (Bong.) Carr.) at four locations. Nutrient concentrations in forest floors correlated poorly with litter nutrient concentrations; the only significant relationships were for Ca and K. Nitrogen mineralization correlated weakly with forest floor C/N ratio, and differed more among sites than among species. None of the litter chemistry parameters were related to net N mineralization rates. Decomposition was fastest in hemlock litter, intermediate in Douglas-fir litter and lowest in cedar litter. Litter also decomposed more rapidly on hemlock forest floors than on cedar forest floors. Rates of N mineralization in the forest floors were not related to rates of decomposition of foliar litter. Differences among sites in N mineralization rates were related to the understory vegetation composition, particularly the amount of the ericaceous shrub salal, which in turn was related to slope position. These site factors appeared to override the effect of tree species on rates of N mineralization.


2001 ◽  
Vol 79 (11) ◽  
pp. 1349-1357 ◽  
Author(s):  
Cameron G Lait ◽  
Sarah L Bates ◽  
Karen K Morrissette ◽  
John H Borden ◽  
Allison R Kermode

Radiography is a valuable tool for assessing quality of conifer seeds, but it cannot differentiate between aborted seeds and seeds that have been emptied by western conifer seed bug (Leptoglossus occidentalis Heidemann) feeding. We tested three biochemical marker-based assays that were developed to identify L. occidentalis damage to seeds of Douglas-fir, Pseudostuga menziesii (Mirb.) Franco, for their use in lodgepole pine, Pinus contorta var. latifolia Engelmann. The three assays included measurement of storage protein reserve depletion, immunodetection of fragments of insoluble (crystalloid) storage proteins, and immunodetection of L. occidentalis salivary proteins. Aborted seeds contained significantly less soluble and insoluble protein than seeds that were fed on by L. occidentalis. Polyclonal antibodies raised against 11S globulin crystalloid proteins or L. occidentalis salivary gland extracts only immunoreacted with proteins in seeds exposed to L. occidentalis feeding. In a single-blind test, antibody raised against salivary-gland extracts correctly distinguished between undamaged full seeds, unfilled aborted seeds, and seeds fed on by L. occidentalis. Immunodetection of L. occidentalis salivary proteins was also performed on seeds of Abies amabilis Dougl. ex J. Forbes, Tsuga heterophylla (Raf.) Sarg., Picea sitchensis Bong (Carr.), Pinus ponderosa Lawson, and Pinus monticola Dougl. ex D. Don. For all species, immunoreactive polypeptides were only detected in seeds fed on by L. occidentalis. These biochemical marker-based techniques could help researchers and seed orchard managers estimate seed losses caused by L. occidentalis in commercial seed orchards and natural forest stands.Key words: Leptoglossus occidentalis, saliva, biochemical markers, polyclonal antibody, immunodetection, Pinus contorta.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2371-2384
Author(s):  
Laura G. Raymond ◽  
David Sandquist ◽  
Stefan J. Hill ◽  
Roger Meder ◽  
Volker C. Behr

Six tree species were examined using 1H NMR spectroscopy of sap extracted by supercritical CO2. A metabolomic approach was developed to evaluate the sap extracted from sapwood of Norway spruce (Picea abies), Sitka spruce (Picea sitchensis), radiata pine (Pinus radiata), macrocarpa (Cupressus macrocarpa), and two Eucalyptus species—shining gum and mountain ash (Eucalyptus nitens and Eucalyptus regnans. The sap extraction patterns in the different species were visualised using 1H magnetic resonance imaging. In softwoods with distinct annual rings, water was first removed from the latewood bands, and then gradually from the earlywood bands. In the case of the hardwood species an almost random water redistribution, rather than water expulsion, was observed. Analysis of the principal component analysis loading plots showed that the significant differences in the sap between each species were due to the carbohydrate region. Key discriminators were identified as pinitol, sucrose, glucose, and fructose.


1994 ◽  
Vol 72 (11) ◽  
pp. 1635-1646 ◽  
Author(s):  
X. J. Li ◽  
P. J. Burton ◽  
C. L. Leadem

Pregermination stratification treatment was generally more important than the effects of light on seed germination by 14 conifer species and varieties native to British Columbia. Nevertheless, there were some strong species differences in the response of germination to light. Final germination percentage after 21 days (28 days for Abies spp.) for both stratified and unstratified seeds of Picea glauca, Picea sitchensis, and Tsuga heterophylla showed no response to light during germination. Seed germination by Abies grandis, Pinus contorta var. contorta, Pinus contorta var. latifolia, Pinus ponderosa, Pseudotsuga menziesii var. glauca, and Pseudotsuga menziesii var. menziesii responded positively to light if unstratified but was not significantly affected by light when stratified. For Thuja plicata seeds, germination responded positively to light regardless of stratification pretreatment. Light appeared to reduce germination of stratified seeds of Abies amabilis, Abies lasiocarpa, Larix occidentalis, and Pinus monticola, although stratification conditions for these species were suboptimal. The germination rate of stratified seeds of all species and unstratified seeds of most species was increased by light. Results showed no significant relationship between germination response to light and shade-tolerance ranking or mean seed weight of the species. In six seed lots of Pinus contorta var. latifolia, however, we detected a weak negative correlation between mean seed weight and unstratified light responsivity measured after 1 week but a significant positive correlation when measured after 3 weeks. Very low light levels in closed-canopy forests or in the forest floor may prolong tree seed germination but are unlikely to constrain final germination levels after most seeds have been naturally stratified by moist, cool winter conditions. The importance of differences in the rate and timing of tree seed germination under natural conditions remains to be demonstrated. Key words: conifer biology, forest regeneration, light response, lodgepole pine, Pinus contorta, seed germination, stratification.


Sign in / Sign up

Export Citation Format

Share Document