intracellular second messengers
Recently Published Documents


TOTAL DOCUMENTS

47
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 12 ◽  
Author(s):  
Alexia Dumas ◽  
Ulla G. Knaus

Redox medicine is a new therapeutic concept targeting reactive oxygen species (ROS) and secondary reaction products for health benefit. The concomitant function of ROS as intracellular second messengers and extracellular mediators governing physiological redox signaling, and as damaging radicals instigating or perpetuating various pathophysiological conditions will require selective strategies for therapeutic intervention. In addition, the reactivity and quantity of the oxidant species generated, its source and cellular location in a defined disease context need to be considered to achieve the desired outcome. In inflammatory diseases associated with oxidative damage and tissue injury, ROS source specific inhibitors may provide more benefit than generalized removal of ROS. Contemporary approaches in immunity will also include the preservation or even elevation of certain oxygen metabolites to restore or improve ROS driven physiological functions including more effective redox signaling and cell-microenvironment communication, and to induce mucosal barrier integrity, eubiosis and repair processes. Increasing oxidants by host-directed immunomodulation or by exogenous supplementation seems especially promising for improving host defense. Here, we summarize examples of beneficial ROS in immune homeostasis, infection, and acute inflammatory disease, and address emerging therapeutic strategies for ROS augmentation to induce and strengthen protective host immunity.


2020 ◽  
Vol 13 ◽  
pp. 117864692097090
Author(s):  
Abid Bhat ◽  
Ananda Staats Pires ◽  
Vanessa Tan ◽  
Saravana Babu Chidambaram ◽  
Gilles J Guillemin

Sleep has a regulatory role in maintaining metabolic homeostasis and cellular functions. Inadequate sleep time and sleep disorders have become more prevalent in the modern lifestyle. Fragmentation of sleep pattern alters critical intracellular second messengers and neurotransmitters which have key functions in brain development and behavioral functions. Tryptophan metabolism has also been found to get altered in SD and it is linked to various neurodegenerative diseases. The kynurenine pathway is a major regulator of the immune response. Adequate sleep alleviates neuroinflammation and facilitates the cellular clearance of metabolic toxins produced within the brain, while sleep deprivation activates the enzymatic degradation of tryptophan via the kynurenine pathway, which results in an increased accumulation of neurotoxic metabolites. SD causes increased production and accumulation of kynurenic acid in various regions of the brain. Higher levels of kynurenic acid have been found to trigger apoptosis, leads to cognitive decline, and inhibit neurogenesis. This review aims to link the impact of sleep deprivation on tryptophan metabolism and associated complication in the brain.


2019 ◽  
Author(s):  
Tamara Sternlieb ◽  
Alejandra C. Schoijet ◽  
Guillermo D. Alonso

ABSTRACTAmong the many environmental challenges the parasite Trypanosoma cruzi has to overcome to complete its life cycle through different hosts, oxidative stress plays a central role. Different stages of this parasite encounter distinct sources of oxidative stress, such as the oxidative burst of the immune system, or the Heme released from hemoglobin degradation in the triatomine’s midgut. Also, the redox status of the surroundings functions as a signal to the parasite, triggering processes coupled to differentiation or proliferation. Intracellular second messengers, like cAMP, are responsible for the transduction of environmental queues and initiating cellular processes accordingly. In trypanosomatids cAMP is involved in a variety of processes, including proliferation, differentiation, osmoregulation and quorum sensing. Trypanosomatid phosphodiesterases (PDE) show atypical pharmacological properties and some have been involved in key processes for the survival of the parasites, which validates them as attractive therapeutic targets. Our work here shows that cAMP modulates different processes according to parasite stage. Epimastigotes become more resistant to oxidative stress when pre-treated with cAMP analogs, while trypomastigotes do not alter their response to oxidative stress under the same treatment. However, cAMP analogs do increase trypomastigotes infectivity in vitro. Also, we show that TcrPDEA1, a functionally enigmatic phosphodiesterase with very high Km, is involved in the epimastigotes response to oxidative stress.


2019 ◽  
Vol 1866 (5) ◽  
pp. 773-792 ◽  
Author(s):  
David R. Zhou ◽  
Rawan Eid ◽  
Katie A. Miller ◽  
Eric Boucher ◽  
Craig A. Mandato ◽  
...  

2019 ◽  
Vol 47 (1) ◽  
pp. 329-337 ◽  
Author(s):  
Ralf Fliegert ◽  
Jörg Heeren ◽  
Friedrich Koch-Nolte ◽  
Viacheslav O. Nikolaev ◽  
Christian Lohr ◽  
...  

Abstract Adenine nucleotides (AdNs) play important roles in immunity and inflammation. Extracellular AdNs, such as adenosine triphosphate (ATP) or nicotinamide adenine dinucleotide (NAD) and their metabolites, act as paracrine messengers by fine-tuning both pro- and anti-inflammatory processes. Moreover, intracellular AdNs derived from ATP or NAD play important roles in many cells of the immune system, including T lymphocytes, macrophages, neutrophils and others. These intracellular AdNs are signaling molecules that transduce incoming signals into meaningful cellular responses, e.g. activation of immune responses against pathogens.


2016 ◽  
Vol 44 (2) ◽  
pp. 546-553 ◽  
Author(s):  
Anthony J. Morgan

Extracellular stimuli evoke the synthesis of intracellular second messengers, several of which couple to the release of Ca2+ from Ca2+-storing organelles via activation of cognate organellar Ca2+-channel complexes. The archetype is the inositol 1,4,5-trisphosphate (IP3) and IP3 receptor (IP3R) on the endoplasmic reticulum (ER). A less understood, parallel Ca2+ signalling cascade is that involving the messenger nicotinic acid adenine dinucleotide phosphate (NAADP) that couples to Ca2+ release from acidic Ca2+ stores [e.g. endo-lysosomes, secretory vesicles, lysosome-related organelles (LROs)]. NAADP-induced Ca2+ release absolutely requires organellar TPCs (two-pore channels). This review discusses how ER and acidic Ca2+ stores physically and functionally interact to generate and shape global and local Ca2+ signals, with particular emphasis on the two-way dialogue between these two organelles.


2016 ◽  
Vol 69 (5) ◽  
pp. 391-397 ◽  
Author(s):  
Matthew Brown ◽  
James R M Black ◽  
Rohini Sharma ◽  
Justin Stebbing ◽  
David J Pinato

The interaction between Axl receptor tyrosine kinase and its main ligand Gas6 has been implicated in the progression of a wide number of malignancies. More recently, overexpression of Axl has emerged as a key molecular determinant underlying the development of acquired resistance to targeted anticancer agents. The activation of Axl is overexpression-dependent and controls a number of hallmarks of cancer progression including proliferation, migration, resistance to apoptosis and survival through a complex network of intracellular second messengers. Axl has been noted to influence clinically meaningful end points including metastatic recurrence and survival in the vast majority of tumour types. With Axl inhibitors having gained momentum as novel anticancer therapies, we provide an overview of the biological and clinical relevance of this molecular pathway, outlining the main directions of research.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Jeong Hee Hong

HCO3-and fluid secretion are major functions of all epithelia, and alterations inHCO3-secretion by sodium bicarbonate cotransporters are associated with many epithelial diseases, such as renal, ocular, and dental abnormalities. Electrolyte and fluid exits are synergistically mediated by the intracellular second messengers, cAMP and Ca2+, and this raises the possibility that ion transporters are involved in simple secretion and more complicated forms of regulation. Evidence indicates thatHCO3-transport is regulated by the assemblage of Na+-HCO3-cotransporters (NBCs) into complexes by multiple regulatory factors. Recently the specific regulatory functions of factors that interact with NBCe1, especially NBCe1-B, have been elucidated. In this review, I focus on the structural characteristics of electrogenic NBCe1, pathophysiology of NBCe1, and molecular mechanisms responsible for transporter regulation. Moreover I propose the possibility to apply nanomaterials combined with regulatory factors for modulating the activity of NBC transporters as a potential development of therapeutic drug.


2012 ◽  
Vol 449 (2) ◽  
pp. 449-457 ◽  
Author(s):  
Hannah V. McCue ◽  
Joanna D. Wardyn ◽  
Robert D. Burgoyne ◽  
Lee P. Haynes

Distinct spatiotemporal Ca2+ signalling events regulate fundamental aspects of eukaryotic cell physiology. Complex Ca2+ signals can be driven by release of Ca2+ from intracellular organelles that sequester Ca2+ such as the ER (endoplasmic reticulum) or through the opening of Ca2+-permeable channels in the plasma membrane and influx of extracellular Ca2+. Late endocytic pathway compartments including late-endosomes and lysosomes have recently been observed to sequester Ca2+ to levels comparable with those found within the ER lumen. These organelles harbour ligand-gated Ca2+-release channels and evidence indicates that they can operate as Ca2+-signalling platforms. Lysosomes sequester Ca2+ to a greater extent than any other endocytic compartment, and signalling from this organelle has been postulated to provide ‘trigger’ release events that can subsequently elicit more extensive Ca2+ signals from stores including the ER. In order to investigate lysosomal-specific Ca2+ signalling a simple method for measuring lysosomal Ca2+ release is essential. In the present study we describe the generation and characterization of a genetically encoded, lysosomally targeted, cameleon sensor which is capable of registering specific Ca2+ release in response to extracellular agonists and intracellular second messengers. This probe represents a novel tool that will permit detailed investigations examining the impact of lysosomal Ca2+ handling on cellular physiology.


Sign in / Sign up

Export Citation Format

Share Document