Impact Wave Propagation in a Thin Elastic Isotropic Plate

Author(s):  
Frantisek Klimenda ◽  
Josef Soukup ◽  
Lenka Rychlikova
Author(s):  
YANPING BAI ◽  
JIANZHONG WANG ◽  
ZHEN JIN

The model of transient axially symmetric wave propagation in a circular elastic bar is studied by using the elastic wave propagation theory and the methods of integral transform. The numerical results of the model of longitudinal impact wave velocity are shown using a method of numerical analysis. This theoretical formula and methods of analysis is used in an experimental system to measure the dynamic characteristic of microstructure. Curves of the wave peak emulation of Davies bar are obtained by using theoretical formulation.


2002 ◽  
Vol 29 (2-3) ◽  
pp. 73-80 ◽  
Author(s):  
Quentin Grimal ◽  
Salah Naili ◽  
Alexandre Watzky
Keyword(s):  

Author(s):  
Yu Liu ◽  
Andrew J. Dick

In this paper, the propagation of lateral waves in a drill-string are studied by using a new numerical method and a stability monitoring scheme is proposed. The drill-string is modeled as a linear beam structure under gravitational field effects. An iterative wavelet-based spectral finite element method (WS-FEM) model is developed to obtain a high fidelity response. Numerical simulations of the lateral impact wave propagation at the bottom-hole-assembly (BHA) are conducted and a time-frequency analysis technique is applied to the response in order to identify the relationship between the position of the transition point between positive and negative strain and the dispersive properties of the lateral wave. Based on the results, a new monitoring scheme is proposed to monitor the stability of the drill-string based on a combination of lateral impact wave analysis at the BHA and the axial acoustic telemetry technique.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
Yu Liu ◽  
Yi Ji ◽  
Andrew J. Dick

In this paper, the propagation of lateral waves and axial acoustic waves in a drill-string are studied by using a new numerical method and a stability monitoring scheme is proposed. The drill-string is modeled as a linear beam structure under gravitational field effects. Lateral and axial motions are assumed to be decoupled, and the corresponding equations of motion are derived. An iterative wavelet-based spectral finite element method (WSFEM) model is developed to obtain a high fidelity response. Numerical simulations of the lateral impact wave propagation at the bottom-hole-assembly (BHA) are first conducted, and a time-frequency analysis technique is applied to the response in order to identify the relationship between the position of the transition point between positive and negative strain and the dispersive properties of the lateral wave. Next, axial acoustic wave propagation through the upper drill-pipe is studied to explore the banded transmission properties of the drill-string introduced by periodic joints. Based on the results, a new monitoring scheme is proposed to monitor the stability of the drill-string by conducting a combination of lateral impact wave analysis at the BHA and the axial acoustic telemetry technique. The new numerical method used in this study provides a unified approach to study the wave propagation in drill-strings, and the proposed stability monitoring scheme is expected to be applicable in drill-string operations.


1975 ◽  
Vol 3 (3) ◽  
pp. 196-210 ◽  
Author(s):  
G. R. Potts ◽  
T. T. Csora

Abstract General principles of mechanical vibration enigneering are used to discuss the total tire vibration problem in terms of three necessary factors: an excitation force, a transmitter, and a receiver of the vibratory force. The present state of knowledge for each of these factors is discussed and an overall goal for reduction of vehicle vibration is formulated. Current experiments for investigating tire vibration transmissibility are described and the results presented: the first used an electrohydraulic shaker; the second used time average holography, in order to see tires, and investigated impact wave propagation in tires with double-pulsed laser holography. Results show that it is difficult to reduce tire transmissibility and to shift resonant frequencies; however, this may be accomplished by introducing small amounts of body ply crown angles in radial tires (0–20 deg). Results of the impact wave propagation tests are beginning to reveal the true nature of what happens when a tire strikes a sharp bump.


Author(s):  
J. M. Galbraith ◽  
L. E. Murr ◽  
A. L. Stevens

Uniaxial compression tests and hydrostatic tests at pressures up to 27 kbars have been performed to determine operating slip systems in single crystal and polycrystal1ine beryllium. A recent study has been made of wave propagation in single crystal beryllium by shock loading to selectively activate various slip systems, and this has been followed by a study of wave propagation and spallation in textured, polycrystal1ine beryllium. An alteration in the X-ray diffraction pattern has been noted after shock loading, but this alteration has not yet been correlated with any structural change occurring during shock loading of polycrystal1ine beryllium.This study is being conducted in an effort to characterize the effects of shock loading on textured, polycrystal1ine beryllium. Samples were fabricated from a billet of Kawecki-Berylco hot pressed HP-10 beryllium.


Sign in / Sign up

Export Citation Format

Share Document