linker insertion mutagenesis
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 0)

H-INDEX

16
(FIVE YEARS 0)

2008 ◽  
Vol 190 (13) ◽  
pp. 4666-4676 ◽  
Author(s):  
Kerrie L. May ◽  
Renato Morona

ABSTRACT The IcsA (VirG) protein of Shigella flexneri is a polarly localized, outer membrane protein that is essential for virulence. Within host cells, IcsA activates the host actin regulatory protein, neural Wiskott-Aldrich syndrome protein (N-WASP), which in turn recruits the Arp2/3 complex, which nucleates host actin to form F-actin comet tails and initiate bacterial motility. Linker insertion mutagenesis was undertaken to randomly introduce 5-amino-acid in-frame insertions within IcsA. Forty-seven linker insertion mutants were isolated and expressed in S. flexneri ΔicsA strains. Mutants were characterized for IcsA protein production, cell surface expression and localization, intercellular spreading, F-actin comet tail formation, and N-WASP recruitment. Using this approach, we have identified a putative autochaperone region required for IcsA biogenesis, and our data suggest an additional region, not previously identified, is required for N-WASP recruitment.


2007 ◽  
Vol 189 (18) ◽  
pp. 6734-6739 ◽  
Author(s):  
Mohamad A. Hamad ◽  
Matthew L. Nilles

ABSTRACT LcrV, a multifunctional protein, acts as a positive regulator of effector protein secretion for the type III secretion system (T3SS) in Yersinia pestis by interaction with the negative regulator LcrG. In this study, LcrV was analyzed to identify regions required for LcrG interaction. Random-linker insertion mutagenesis, deletion analysis, and site-directed mutagenesis of hydrophobic amino acids between residues 290 and 311 allowed the isolation of an LcrV mutant (LcrV L291R F308R) defective for LcrG interaction. The new residues identified in LcrG interaction lie in helix 12 of LcrV; residues in helix 7 of LcrV are known to be involved in LcrG interaction. Helix 7 and helix 12 of LcrV interact to form an intramolecular coiled coil; these new results suggest that the intramolecular coiled coil in LcrV is required for LcrG interaction and activation of the T3SS.


2005 ◽  
Vol 187 (13) ◽  
pp. 4514-4520 ◽  
Author(s):  
H. Ellen James ◽  
Paul A. Beare ◽  
Lois W. Martin ◽  
Iain L. Lamont

ABSTRACT The FpvA protein of Pseudomonas aeruginosa strain PAO1 mediates uptake of a siderophore, ferripyoverdine. It is also a component of a signal transduction pathway that controls production of an exotoxin, a protease, pyoverdine, and FpvA itself. The purpose of the research described here was to dissect these different functions of FpvA. Signaling involves an N-terminal domain of FpvA, and it was shown that this domain is probably located in the periplasm, as expected. Short peptides were inserted at 36 sites within FpvA by linker insertion mutagenesis. The effects of these mutations on the presence of FpvA in the outer membrane, on FpvA-mediated uptake of ferripyoverdine, and on pyoverdine synthesis and gene expression were determined. Five of the mutations resulted in the absence of FpvA from the outer membrane of the bacteria. All of the remaining mutations eliminated either the transport or signaling function of FpvA and most affected both functions. Three mutations prevented transport of ferripyoverdine but had no effect on the signal transduction pathway showing that transport of ferripyoverdine is not required for the trans-membrane signaling process. Conversely, eight mutations affected pyoverdine-mediated signaling but had no effect on transport of ferripyoverdine. These data show that insertions throughout FpvA resulted in loss of function and that signaling and transport are separate and discrete functions of FpvA.


2003 ◽  
Vol 185 (9) ◽  
pp. 2731-2738 ◽  
Author(s):  
Franz Narberhaus ◽  
Sylvia Balsiger

ABSTRACT The sigma factor RpoH (σ32) is the key regulator of the heat shock response in Escherichia coli. Many structural and functional properties of the sigma factor are poorly understood. To gain further insight into RpoH regions that are either important or dispensable for its cellular activity, we generated a collection of tetrapeptide insertion variants by a recently established in vitro linker insertion mutagenesis technique. Thirty-one distinct insertions were obtained, and their sigma factor activity was analyzed by using a groE-lacZ reporter fusion in an rpoH-negative background. Our study provides a map of permissive sites which tolerate linker insertions and of functionally important regions at which a linker insertion impairs sigma factor activity. Selected linker insertion mutants will be discussed in the light of known sigma factor properties and in relation to a modeled structure of an RpoH fragment containing region 2.


2002 ◽  
Vol 184 (6) ◽  
pp. 1779-1782 ◽  
Author(s):  
Viviane Robert ◽  
Finbarr Hayes ◽  
Andrée Lazdunski ◽  
Gérard P. F. Michel

ABSTRACT Most of the exoproteins secreted by Pseudomonas aeruginosa are transported via the type II secretion system. This machinery, which is widely conserved in gram-negative bacteria, consists of 12 Xcp proteins organized as a multiprotein complex, also called the secreton. We previously reported that the mutual stabilization of XcpZ and XcpY plays an important role in the assembly of the secreton. In this study, we engineered variant XcpZ proteins by using linker insertion mutagenesis. We identified three distinct regions of XcpZ required for both the stabilization of XcpY and the functionality of the secreton. Interestingly, we also demonstrated that another component of the machinery, XcpP, can modulate the stabilizing activity of XcpZ on XcpY.


Gene ◽  
1994 ◽  
Vol 139 (1) ◽  
pp. 9-18 ◽  
Author(s):  
G.M. Monokian ◽  
L.T. Braiterman ◽  
J.D. Boeke

Sign in / Sign up

Export Citation Format

Share Document