Observations of Cyanogen Bromide (BrCN) in the Global Atmosphere during the NASA Atmospheric Tomography mission (ATom) and Implications for Active Bromine Chemistry.

Author(s):  
James Roberts ◽  
Siyuan Wang ◽  
Patrick Veres ◽  
J. Andrew Neuman ◽  
Hannah Allen ◽  
...  

<p>Bromine activation (the production of Br in an elevated oxidation state) represents a mechanism for ozone destruction and mercury removal in the global troposphere, and has been a common feature of both polar boundary layers, often accompanied by nearly complete ozone destruction. The chemistry and budget of active bromine compounds (e.g. Br<sub>2</sub>, BrCl, HOBr) reflects the cycling of Br and ultimately its impact on the environment. Cyanogen bromide (BrCN) has recently been measured by iodide ion high resolution time-of-flight mass spectrometry (I<sup>-</sup> CIMS) during the NASA Atmospheric Tomography mission, and could be a previously unquantified participant in active Br chemistry. BrCN mixing ratios ranged from below detection limit (1.5pptv) up to as high as 48 pptv (10sec avg) and enhancements were almost exclusively confined to the polar boundary layers (PBL). Likely BrCN formation pathways involve the reactions of active Br (Br<sub>2</sub>, HOBr) with reduced nitrogen compounds. Gas phase loss processes due to reaction with radical species are likely quite slow and photolysis is known to be relatively slow. These features, and the lack of BrCN enhancements above the PBL, imply that surface reactions must be the major loss processes. Known liquid phase reactions of BrCN result in the conversion of the Br to bromide (Br<sup>-</sup>) or formation of C-Br bonded organic species, hence a loss of atmospheric active Br from that chemical cycle. Thus, accounting for the chemistry of BrCN will be an important aspect of understanding polar Br cycling.</p>

Author(s):  
Zhining Zhang ◽  
Hanyang Man ◽  
Fengkui Duan ◽  
Zhaofeng lv ◽  
Songxin Zheng ◽  
...  

Abstract A second wave of coronavirus disease 2019 (COVID-19) infections have emerged in summer Beijing, 2020, which provided an opportunity to explore the response of air pollution to reduced human activity. Proton-Transfer-Reaction Time-of-Flight Mass Spectrometry (PTR-ToF-MS) coupled with Positive Matrix Factorization (PMF) source apportionment were applied to evaluate the pollution pattern and capture the detailed dynamic emission characteristics of volatile organic compounds (VOCs) during the representative period with the occurrence of O3 pollution episodes and the Beijing resurgence of COVID-19. The level of anthropogenic VOC was lower than the same period of previous years due to the pandemic and emission reduction measures. More than two-thirds of the observation period were identified as high-O3 days and VOCs exhibited higher mixing ratios and faster consumption rates in the daytime under high-O3 days. The identified VOC emission sources and the corresponding contributions during the whole observation period included: vehicle + fuel (12.41 ± 9.43%), industrial process (9.40 ± 8.65%), solvent usage (19.58 ± 13.46%), biogenic (6.03 ± 5.40%), background + long-lived (5.62 ± 11.37%), and two groups of oxygenated VOC (OVOC) factors (primary emission and secondary formation, 26.14 ± 15.20% and 20.84 ± 14.0%, respectively). Refined dynamic source apportionment results show that the “stay at home” tendency led to decreased emission (- 34.47 ± 1.90 %) and weakened morning peak of vehicle + fuel during the Beijing resurgence. However, growing emission of primary OVOCs (+ 51.10 ± 8.28%) with similar diurnal variation was observed in the new outbreak and afterwards, which might be related to the enhanced usage of pandemic products. The present study illustrated that more stringent VOC reduction measures towards pandemic products should be carried out to achieve the balanced emission abatement of NOx and VOC when adhering to regular epidemic prevention and control measures.


2009 ◽  
Vol 9 (6) ◽  
pp. 27837-27892 ◽  
Author(s):  
M. Camredon ◽  
J. F. Hamilton ◽  
M. S. Alam ◽  
K. P. Wyche ◽  
T. Carr ◽  
...  

Abstract. Secondary organic aerosol (SOA) affects atmospheric composition, air quality and radiative transfer. However major difficulties are encountered in the development of reliable models for SOA formation. Constraints on processes involved in SOA formation can be obtained by interpreting the speciation and evolution of organics in the gaseous and condensed phase simultaneously. In this study we investigate SOA formation from dark α-pinene ozonolysis with particular emphasis upon the mass distribution of gaseous and particulate organic species. A detailed model for SOA formation is compared with the results from experiments performed in the EUropean PHOtoREactor (EUPHORE) simulation chamber, including on-line gas-phase composition obtained from Chemical-Ionization-Reaction Time-Of-Flight Mass-Spectrometry measurements, and off-line analysis of SOA samples performed by Electrospray Ionisation Ion Trap Mass Spectrometry. The temporal profile of SOA mass concentration is relatively well reproduced by the model. Sensitivity analysis highlights the importance of the choice of vapour pressure estimation method. Comparisons of the simulated gaseous- and condensed-phase mass distributions with those observed show a generally good agreement. The simulated speciation has been used to (i) propose a chemical structure for the principal gaseous semi-volatile organic compounds and condensed monomer organic species and (ii) explore the possible contribution of a range of accretion reactions occurring in the condensed phase. We find that oligomer formation through esterification reactions gives the best agreement between the observed and simulated mass spectra.


2010 ◽  
Vol 10 (6) ◽  
pp. 2893-2917 ◽  
Author(s):  
M. Camredon ◽  
J. F. Hamilton ◽  
M. S. Alam ◽  
K. P. Wyche ◽  
T. Carr ◽  
...  

Abstract. Secondary Organic Aerosol (SOA) affects atmospheric composition, air quality and radiative transfer, however major difficulties are encountered in the development of reliable models for SOA formation. Constraints on processes involved in SOA formation can be obtained by interpreting the speciation and evolution of organics in the gaseous and condensed phase simultaneously. In this study we investigate SOA formation from dark α-pinene ozonolysis with particular emphasis upon the mass distribution of gaseous and particulate organic species. A detailed model for SOA formation is compared with the results from experiments performed in the EUropean PHOtoREactor (EUPHORE) simulation chamber, including on-line gas-phase composition obtained from Chemical-Ionization-Reaction Time-Of-Flight Mass-Spectrometry measurements, and off-line analysis of SOA samples performed by Ion Trap Mass Spectrometry and Liquid Chromatography. The temporal profile of SOA mass concentration is relatively well reproduced by the model. Sensitivity analysis highlights the importance of the choice of vapour pressure estimation method, and the potential influence of condensed phase chemistry. Comparisons of the simulated gaseous- and condensed-phase mass distributions with those observed show a generally good agreement. The simulated speciation has been used to (i) propose a chemical structure for the principal gaseous semi-volatile organic compounds and condensed monomer organic species, (ii) provide evidence for the occurrence of recently suggested radical isomerisation channels not included in the basic model, and (iii) explore the possible contribution of a range of accretion reactions occurring in the condensed phase. We find that oligomer formation through esterification reactions gives the best agreement between the observed and simulated mass spectra.


2017 ◽  
Author(s):  
Abigail Koss ◽  
Bin Yuan ◽  
Carsten Warneke ◽  
Jessica B. Gilman ◽  
Brian M. Lerner ◽  
...  

Abstract. VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS / PTR-ToF-MS) from aircraft during the SONGNEX campaign in March–April 2015. This work presents an overview of major VOC species measured in nine oil and gas producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates, and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.


2016 ◽  
Author(s):  
Helmke Hepach ◽  
Birgit Quack ◽  
Susann Tegtmeier ◽  
Anja Engel ◽  
Astrid Bracher ◽  
...  

Abstract. Halocarbons, halogenated short-chained hydrocarbons, are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling obtained during the M91 cruise onboard the research vessel Meteor in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group as likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L−1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L−1 and diiodomethane (CH2I2) of up to 32.4 pmol L−1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. The enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels.


2017 ◽  
Vol 10 (8) ◽  
pp. 2941-2968 ◽  
Author(s):  
Abigail Koss ◽  
Bin Yuan ◽  
Carsten Warneke ◽  
Jessica B. Gilman ◽  
Brian M. Lerner ◽  
...  

Abstract. VOCs related to oil and gas extraction operations in the United States were measured by H3O+ chemical ionization time-of-flight mass spectrometry (H3O+ ToF-CIMS/PTR-ToF-MS) from aircraft during the Shale Oil and Natural Gas Nexus (SONGNEX) campaign in March–April 2015. This work presents an overview of major VOC species measured in nine oil- and gas-producing regions, and a more detailed analysis of H3O+ ToF-CIMS measurements in the Permian Basin within Texas and New Mexico. Mass spectra are dominated by small photochemically produced oxygenates and compounds typically found in crude oil: aromatics, cyclic alkanes, and alkanes. Mixing ratios of aromatics were frequently as high as those measured downwind of large urban areas. In the Permian, the H3O+ ToF-CIMS measured a number of underexplored or previously unreported species, including aromatic and cycloalkane oxidation products, nitrogen heterocycles including pyrrole (C4H5N) and pyrroline (C4H7N), H2S, and a diamondoid (adamantane) or unusual monoterpene. We additionally assess the specificity of a number of ion masses resulting from H3O+ ion chemistry previously reported in the literature, including several new or alternate interpretations.


2016 ◽  
Vol 16 (18) ◽  
pp. 12219-12237 ◽  
Author(s):  
Helmke Hepach ◽  
Birgit Quack ◽  
Susann Tegtmeier ◽  
Anja Engel ◽  
Astrid Bracher ◽  
...  

Abstract. Halocarbons are produced naturally in the oceans by biological and chemical processes. They are emitted from surface seawater into the atmosphere, where they take part in numerous chemical processes such as ozone destruction and the oxidation of mercury and dimethyl sulfide. Here we present oceanic and atmospheric halocarbon data for the Peruvian upwelling zone obtained during the M91 cruise onboard the research vessel METEOR in December 2012. Surface waters during the cruise were characterized by moderate concentrations of bromoform (CHBr3) and dibromomethane (CH2Br2) correlating with diatom biomass derived from marker pigment concentrations, which suggests this phytoplankton group is a likely source. Concentrations measured for the iodinated compounds methyl iodide (CH3I) of up to 35.4 pmol L−1, chloroiodomethane (CH2ClI) of up to 58.1 pmol L−1 and diiodomethane (CH2I2) of up to 32.4 pmol L−1 in water samples were much higher than previously reported for the tropical Atlantic upwelling systems. Iodocarbons also correlated with the diatom biomass and even more significantly with dissolved organic matter (DOM) components measured in the surface water. Our results suggest a biological source of these compounds as a significant driving factor for the observed large iodocarbon concentrations. Elevated atmospheric mixing ratios of CH3I (up to 3.2 ppt), CH2ClI (up to 2.5 ppt) and CH2I2 (3.3 ppt) above the upwelling were correlated with seawater concentrations and high sea-to-air fluxes. During the first part of the cruise, the enhanced iodocarbon production in the Peruvian upwelling contributed significantly to tropospheric iodine levels, while this contribution was considerably smaller during the second part.


2004 ◽  
Vol 4 (5) ◽  
pp. 1407-1417 ◽  
Author(s):  
D. E. M. Ross ◽  
J. A. Pyle ◽  
N. R. P. Harris ◽  
J. D. McIntyre ◽  
G. A. Millard ◽  
...  

Abstract. A unique halocarbon dataset has been obtained using the Australian high altitude research aircraft, the Grob G520T Egrett, during May-June 2000 with GC instrument (DIRAC), which has been previously deployed on balloon platforms. The halocarbon data generally shows a good anticorrelation with ozone data obtained simultaneously from commercial sensors. On 5 June 2000, at 380K, the Egrett entered a high latitude tongue of air over the U.K. CFC-11 and O3 data obtained on the flight show evidence of this feature. The dataset has been used, in conjunction with a 3D chemical transport model, to infer ozone depletion encountered in the midlatitude lower stratosphere during the flight. We calculate that ozone is depleted by 20% relative to its winter value in the higher latitude airmass. A suite of ozone loss tracers in the model have been used to track ozone depletion according to location relative to the vortex and chemical cycle responsible. The model, initialised on 9 December, indicates that 50% of the total chemical ozone destruction encountered in June in the middle latitudes occurred in the 90-70°N equivalent latitude band and that 70% was due to halogen chemistry.


2012 ◽  
Vol 12 (7) ◽  
pp. 17135-17150
Author(s):  
J. L. Thomas ◽  
J. E. Dibb ◽  
J. Stutz ◽  
R. von Glasow ◽  
S. Brooks ◽  
...  

Abstract. From 10 May through 17 June, 2007 and 6 June through 9 July, 2008 intensive sampling campaigns at Summit, Greenland confirmed that active bromine chemistry is occurring in and above the snow pack at the highest part of the Greenland ice sheet (72°36' N, 38° 25' W and 3.2 km a.s.l.). Direct measurements found BrO and soluble gas phase Br− mixing ratios in the low pptv range on many days (maxima <10 pptv). Conversion of up to 200 pg m−3 of gaseous elemental mercury (GEM) to reactive gaseous mercury (RGM) and enhanced OH relative to HO2 plus RO2 confirm that active bromine chemistry is impacting chemical cycles even at such low abundances of reactive bromine species. However, it does not appear that Bry chemistry can fully account for observed perturbations to HOx partitioning, suggesting unknown additional chemical processes may be important in this unique environment, or that our understanding of coupled NOx-HOx−Bry chemistry above sunlit polar snow is incomplete. Rapid transport from the North Atlantic marine boundary layer occasionally caused enhanced BrO at Summit (just two such events observed during the 12 weeks of sampling over the two seasons). In general observed reactive bromine was linked to activation of bromide (Br−) in, and release of reactive bromine from, the snowpack. A coupled snow-atmosphere one-dimensional model that assumed snow photochemistry as the only source successfully simulated observed NO and BrO at Summit during a three day interval when winds were weak (transport not a factor). The source of Br− in surface and near surface snow at Summit is not entirely clear, but concentrations were observed to increase when stronger vertical mixing brought free tropospheric air to the surface. Reactive Bry mixing ratios above the snow often increased in the day or two following increases in snow concentration, but this response was not consistent. On seasonal time scales concentrations of Br− in snow and reactive bromine in the air were directly related.


Sign in / Sign up

Export Citation Format

Share Document