slag cleaning
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 3)

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Tommi Rinne ◽  
Anna Klemettinen ◽  
Lassi Klemettinen ◽  
Ronja Ruismäki ◽  
Hugh O’Brien ◽  
...  

In this study, industrial lithium-ion battery (LIB) waste was treated by a froth flotation process, which allowed selective separation of electrode particles from metallic-rich fractions containing Cu and Al. In the flotation experiments, recovery rates of ~80 and 98.8% for the cathode active elements (Co, Ni, Mn) and graphite were achieved, respectively. The recovered metals from the flotation fraction were subsequently used in high-temperature Cu-slag reduction. In this manner, the possibility of using metallothermic reduction for Cu-slag reduction using Al-wires from LIB waste as the main reductant was studied. The behavior of valuable (Cu, Ni, Co, Li) and hazardous metals (Zn, As, Sb, Pb), as a function of time as well as the influence of Cu-slag-to-spent battery (SB) ratio, were investigated. The results showcase a suitable process to recover copper from spent batteries and industrial Cu-slag. Cu-concentration decreased to approximately 0.3 wt.% after 60 min reduction time in all samples where Cu/Al-rich LIB waste fraction was added. It was also showed that aluminothermic reduction is effective for removing hazardous metals from the slag. The proposed process is also capable of recovering Cu, Co, and Ni from both Cu-slag and LIB waste, resulting in a secondary Cu slag that can be used in various applications.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 784
Author(s):  
Anna Dańczak ◽  
Ronja Ruismäki ◽  
Tommi Rinne ◽  
Lassi Klemettinen ◽  
Hugh O’Brien ◽  
...  

One possible way of recovering metals from spent lithium-ion batteries is to integrate the recycling with already existing metallurgical processes. This study continues our effort on integrating froth flotation and nickel-slag cleaning process for metal recovery from spent batteries (SBs), using anodic graphite as the main reductant. The SBs used in this study was a froth fraction from flotation of industrially prepared black mass. The effect of different ratios of Ni-slag to SBs on the time-dependent phase formation and metal behavior was investigated. The possible influence of graphite and sulfur contents in the system on the metal alloy/matte formation was described. The trace element (Co, Cu, Ni, and Mn) concentrations in the slag were analyzed using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) technique. The distribution coefficients of cobalt and nickel between the metallic or sulfidic phase (metal alloy/matte) and the coexisting slag increased with the increasing amount of SBs in the starting mixture. However, with the increasing concentrations of graphite in the starting mixture (from 0.99 wt.% to 3.97 wt.%), the Fe concentration in both metal alloy and matte also increased (from 29 wt.% to 68 wt.% and from 7 wt.% to 49 wt.%, respectively), which may be challenging if further hydrometallurgical treatment is expected. Therefore, the composition of metal alloy/matte must be adjusted depending on the further steps for metal recovery.


JOM ◽  
2021 ◽  
Author(s):  
Katri Avarmaa ◽  
Lassi Klemettinen ◽  
Hugh O’Brien ◽  
Ari Jokilaakso ◽  
Daniel Lindberg ◽  
...  

AbstractDissolution and solubility of palladium in iron silicate melts saturated with alumina–iron spinel at 1300°C has been measured using an equilibration-drop quenching technique combined with electron probe microanalysis and laser ablation–inductive coupled plasma–mass spectrometry analysis from polished sections. Composition of the resulting Fe-Pd alloy allowed estimation of the activity of palladium at different oxygen partial pressures, and, thus, the solubilities of palladium in the studied slags in conditions typical of copper and nickel smelting as well as slag cleaning at pO2=10-5 to 10-10 atm. The mechanism of palladium dissolution in the studied iron silicate slags was oxidation by formation of the monovalent oxide species PdO0.5 over the entire oxygen activity range of this study. Testing the applicability of the various palladium isotopes for quantitative analyses of Pd in these types of matrices resulted in a good fit of measured concentrations of 104Pd and 105Pd with interference-corrected 106Pd and 108Pd.


Author(s):  
L.-C. Wang ◽  
Y.-G. Wei ◽  
S.-W. Zhou ◽  
B. Li ◽  
H. Wang

As a waste resource, waste cooking oil (WCO) has not been widely used. Based on the characteristics of WCO cracking, this study proposed to replace fossil-based reductant with WCO for copper slag cleaning, to solve the problem of carbon neutralization in this process. Copper slag cleaning experiments were carried out in a lab-scale electric furnace. The matte separated behavior from slag and the distribution of matte in slag were studied. The results showed that the Fe3O4 content decreases from 12.9 to 3.5 wt.% by injecting 2.2 mL of WCO into 300 g copper slag at 1250?C. The distribution of copper content in slag is gradient along the vertical direction. In the reduction stage, the excessive Fe3O4 is reduced and the fluidity of slag is improved. When the precipitation time above 60 minutes, the copper content in the middle and upper slag is reduced to 0.57 wt.%, which realizes the copper slag cleaning by using WCO.


2021 ◽  
Author(s):  
B N Belford ◽  
Andrew A van Niekerk ◽  
Gawie J Lötter ◽  
S C Louw ◽  
W van der Struys

Metallurgist ◽  
2021 ◽  
Vol 64 (9-10) ◽  
pp. 931-939
Author(s):  
R. V. Starykh ◽  
S. I. Vystupov ◽  
L. V. Krupnov ◽  
V. I. Morgoslep ◽  
S. I. Sinyova

Batteries ◽  
2020 ◽  
Vol 6 (4) ◽  
pp. 58
Author(s):  
Katri Avarmaa ◽  
Marko Järvenpää ◽  
Lassi Klemettinen ◽  
Miikka Marjakoski ◽  
Pekka Taskinen ◽  
...  

Cobalt is a critical, high-value metal used extensively in batteries and other sustainable technologies. To secure its supply in future, it is utmost important to recover cobalt efficiently from industrial wastes and recycled End-of-Life batteries. This study aims at finding ways to improve the reduction of cobalt as well as valuable metals nickel and copper in nickel slag cleaning furnace conditions by using both traditional fossil-based coke and a more sustainable option, low-CO2 footprint biochar, as reductants. A cobalt-rich fraction of battery scrap (25.5 wt% Co) was also used as a secondary feed. The experimental technique consisted of reduction experiments with different times at 1400 °C under inert atmosphere, quick quenching and Electron Probe X-ray Microanalysis. The use of biochar resulted in faster reaction kinetics in the reduction process, compared to coke. Moreover, the presence of battery scrap had a clear impact on the behavior and reduction kinetics of the elements and/or enhanced settling and separation of matte and slag. The addition of scrap increased notably the distribution coefficients of the valuable metals but consequently also the iron concentration in matte which is the thermodynamic constraint of the slag cleaning process.


Sign in / Sign up

Export Citation Format

Share Document