scholarly journals Recovering Value from End-of-Life Batteries by Integrating Froth Flotation and Pyrometallurgical Copper-Slag Cleaning

Metals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 15
Author(s):  
Tommi Rinne ◽  
Anna Klemettinen ◽  
Lassi Klemettinen ◽  
Ronja Ruismäki ◽  
Hugh O’Brien ◽  
...  

In this study, industrial lithium-ion battery (LIB) waste was treated by a froth flotation process, which allowed selective separation of electrode particles from metallic-rich fractions containing Cu and Al. In the flotation experiments, recovery rates of ~80 and 98.8% for the cathode active elements (Co, Ni, Mn) and graphite were achieved, respectively. The recovered metals from the flotation fraction were subsequently used in high-temperature Cu-slag reduction. In this manner, the possibility of using metallothermic reduction for Cu-slag reduction using Al-wires from LIB waste as the main reductant was studied. The behavior of valuable (Cu, Ni, Co, Li) and hazardous metals (Zn, As, Sb, Pb), as a function of time as well as the influence of Cu-slag-to-spent battery (SB) ratio, were investigated. The results showcase a suitable process to recover copper from spent batteries and industrial Cu-slag. Cu-concentration decreased to approximately 0.3 wt.% after 60 min reduction time in all samples where Cu/Al-rich LIB waste fraction was added. It was also showed that aluminothermic reduction is effective for removing hazardous metals from the slag. The proposed process is also capable of recovering Cu, Co, and Ni from both Cu-slag and LIB waste, resulting in a secondary Cu slag that can be used in various applications.

2015 ◽  
Vol 51 (1) ◽  
pp. 41-48 ◽  
Author(s):  
J. Jansson ◽  
P. Taskinen ◽  
M. Kaskiala

The initial growth rate of freeze linings on water-cooled elements submerged in molten iron silicate slag is fast. The freeze lining microstructure forming on water cooled steel surface in a high-silica, slag cleaning furnace slag of a direct-to-blister copper smelter is mostly glassy or amorphous. It contains 5-30 ?m magnetite crystals, very small and larger copper droplets as well as small magnetite and silicate nuclei embedded in the glassy silica-rich matrix. Chemically the formed freeze linings are more silica-rich than the slag from which they were generated. Magnetite (spinel) is the primary phase of the solidifying SCF slag but it does not form a continuous network through the freeze lining. Its strength is given by the intergranular silica-rich phase which initially is glassy or microcrystalline. Due to only partial slag reduction in the SCF process, large magnetite crystals are present in the freeze lining and seem to interact physically with copper droplets.


Metals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 680 ◽  
Author(s):  
Ronja Ruismäki ◽  
Tommi Rinne ◽  
Anna Dańczak ◽  
Pekka Taskinen ◽  
Rodrigo Serna-Guerrero ◽  
...  

Since the current volumes of collected end-of-life lithium ion batteries (LIBs) are low, one option to increase the feasibility of their recycling is to feed them to existing metals production processes. This work presents a novel approach to integrate froth flotation as a mechanical treatment to optimize the recovery of valuable metals from LIB scrap and minimize their loss in the nickel slag cleaning process. Additionally, the conventional reducing agent in slag cleaning, namely coke, is replaced with graphite contained in the LIB waste flotation products. Using proper conditioning procedures, froth flotation was able to recover up to 81.3% Co in active materials from a Cu-Al rich feed stream. A selected froth product was used as feed for nickel slag cleaning process, and the recovery of metals from a slag (80%)–froth fraction (20%) mixture was investigated in an inert atmosphere at 1350 °C and 1400 °C at varying reduction times. The experimental conditions in combination with the graphite allowed for a very rapid reduction. After 5 min reduction time, the valuable metals Co, Ni, and Cu were found to be distributed to the iron rich metal alloy, while the remaining fraction of Mn and Al present in the froth fraction was deported in the slag.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 784
Author(s):  
Anna Dańczak ◽  
Ronja Ruismäki ◽  
Tommi Rinne ◽  
Lassi Klemettinen ◽  
Hugh O’Brien ◽  
...  

One possible way of recovering metals from spent lithium-ion batteries is to integrate the recycling with already existing metallurgical processes. This study continues our effort on integrating froth flotation and nickel-slag cleaning process for metal recovery from spent batteries (SBs), using anodic graphite as the main reductant. The SBs used in this study was a froth fraction from flotation of industrially prepared black mass. The effect of different ratios of Ni-slag to SBs on the time-dependent phase formation and metal behavior was investigated. The possible influence of graphite and sulfur contents in the system on the metal alloy/matte formation was described. The trace element (Co, Cu, Ni, and Mn) concentrations in the slag were analyzed using the laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) technique. The distribution coefficients of cobalt and nickel between the metallic or sulfidic phase (metal alloy/matte) and the coexisting slag increased with the increasing amount of SBs in the starting mixture. However, with the increasing concentrations of graphite in the starting mixture (from 0.99 wt.% to 3.97 wt.%), the Fe concentration in both metal alloy and matte also increased (from 29 wt.% to 68 wt.% and from 7 wt.% to 49 wt.%, respectively), which may be challenging if further hydrometallurgical treatment is expected. Therefore, the composition of metal alloy/matte must be adjusted depending on the further steps for metal recovery.


2019 ◽  
Vol 956 ◽  
pp. 55-66
Author(s):  
Bei Lei Yan ◽  
Wei Wei Meng ◽  
San Chao Zhao

In this work, a thermal reduction process via ultrafine titanium powder as the reducing agent under argon atmosphere is firstly used to prepare Ti4O7. Compared with the conventional method, this experiment process reduces the sintering temperature to 850°C. The phase transformation and the morphology of the as-prepared powders are examined by X-Ray diffraction (XRD) and scanning electron microscopy (SEM). Besides, it is found that the Ti4O7 powders obtained by titanium thermal reduction method exhibited the crystal structure, distinctly possessing an average particle size around 750 nm. The as-prepared Ti4O7 nanoparticles are used as anode active material in lithium battery. The results demonstrate that the anode with Ti4O7 calcined at 850°C by titanium thermal reduction method exhibited insertion/extraction lithium ion property.


1989 ◽  
Vol 2 (4) ◽  
pp. i-ii ◽  
Author(s):  
Marti Hellsten ◽  
Anders Klingberg

Author(s):  
Nicolás Rojas Arias ◽  
◽  
Carlos Alberto Sandoval ◽  
Isaí Santamaria ◽  
◽  
...  

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Mingfang He ◽  
Chunhua Yang ◽  
Weihua Gui ◽  
Yiqiu Ling

As an important indicator of flotation performance, froth texture is believed to be related to operational condition in sulphur flotation process. A novel fault detection method based on froth texture unit distribution (TUD) is proposed to recognize the fault condition of sulphur flotation in real time. The froth texture unit number is calculated based on texture spectrum, and the probability density function (PDF) of froth texture unit number is defined as texture unit distribution, which can describe the actual textual feature more accurately than the grey level dependence matrix approach. As the type of the froth TUD is unknown, a nonparametric kernel estimation method based on the fixed kernel basis is proposed, which can overcome the difficulty when comparing different TUDs under various conditions is impossible using the traditional varying kernel basis. Through transforming nonparametric description into dynamic kernel weight vectors, a principle component analysis (PCA) model is established to reduce the dimensionality of the vectors. Then a threshold criterion determined by theTQstatistic based on the PCA model is proposed to realize the performance recognition. The industrial application results show that the accurate performance recognition of froth flotation can be achieved by using the proposed method.


2010 ◽  
Vol 41 (6) ◽  
pp. 1186-1193 ◽  
Author(s):  
Hector M. Henao ◽  
Claudio Pizarro ◽  
Jonkion Font ◽  
Alex Moyano ◽  
Peter C. Hayes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document