scholarly journals Pretreatment of Corn Stover Using an Extremely Low-Liquid Ammonia (ELLA) Method for the Effective Utilization of Sugars in Simultaneous Saccharification and Fermentation (SSF) of Ethanol

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 191
Author(s):  
Tin Diep Trung Le ◽  
Vi Phuong Nguyen Truong ◽  
My Thi Tra Ngo ◽  
Tae Hyun Kim ◽  
Kyeong Keun Oh

Extremely low-liquid ammonia (ELLA) pretreatment using aqueous ammonia was investigated in order to enhance the enzymatic saccharification of corn stover and subsequent ethanol production. In this study, corn stover was treated with an aqueous ammonia solution at different ammonia loading rates (0.1, 0.2, and 0.3 g NH3/g biomass) and various liquid-to-solid (L/S) ratios (0.55, 1.12, and 2.5). The ELLA pretreatment was conducted at elevated temperatures (90–150 °C) for an extended period (24–120 h). Thereafter, the pretreated material was saccharified by enzyme digestion and subjected to simultaneous saccharification and fermentation (SSF) tests. The effects of key parameters on both glucan digestibility and xylan digestibility were analyzed using analysis of variance (ANOVA). Under optimal pretreatment conditions (L/S = 2.5, 0.1 g-NH3/g-biomass, 150 °C), 81.2% glucan digestibility and 61.1% xylan digestibility were achieved. The highest ethanol yield achieved on the SSF tests was 85.4%. The ethanol concentration was 14.5 g/L at 96 h (pretreatment conditions: liquid-to-solid ratio (L/S) = 2.5, 0.1 g-NH3/g-biomass, 150 °C, 24 h. SSF conditions: microorganism Saccharomyces cerevisiae (D5A), 15 FPU/g-glucan, CTech2, 3% w/v glucan, 37 °C, 150 rpm).

2011 ◽  
Vol 343-344 ◽  
pp. 963-967 ◽  
Author(s):  
Zhang Qiang ◽  
Anne Belinda Thomsen

In order to find out appropriate process for ethanol production from corn stover, wet oxidation(195°C,15 minutes)and simultaneous saccharification and fermentation (SSF) was carried out to produce ethanol. The results showed that the cellulose recovery of 92.9% and the hemicellulose recovery of 74.6% were obtained after pretreatment. 86.5% of cellulose was remained in the solid cake . After 24h hydrolysis at 50°C using cellulase(Cellubrix L),the achieved conversion of cellulose to glucose was 64.8%. Ethanol production was evaluated from dried solid cake and the hydrolysate was employed as liquid fraction . After 142 h of SSF with substrate concentration of 8% (W/V), ethanol yield of 73.1 % of the theoretical based on glucose in the raw material was obtained by S. cerevisiae(ordinary baker’ yeast) . The corresponding ethanol concentration and volumetric productivity were 17.2g/L and 0.121g/L.h respectively. The estimated total ethanol production was 257.7 kg/ton raw material by assuming consumption of both C-6 and C-5. No obvious inhibition effect occurred during SSF. These instructions give you the basic guidelines for preparing papers for WCICA/IEEE conference proceedings.


BioResources ◽  
2019 ◽  
Vol 14 (3) ◽  
pp. 6501-6515
Author(s):  
Liping Tan ◽  
Zhongyang Liu ◽  
Tongjun Liu ◽  
Fangfang Wang

Fractionation of corn stover (CS) was carried out by bisulfite pretreatment in order to improve the production of bioethanol and high-value chemicals. Firstly, the optimum bisulfite pretreatment conditions of CS (170 C, 30 min, 7% NaHSO3, 1% H2SO4) were identified. Next, a biorefinery process of bisulfite pretreatment for CS was proposed. CS was separated into solid and liquor components using such pretreatment. The solid components were employed for bioethanol production by quasi-simultaneous saccharification and fermentation (Q-SSF). The bisulfite liquor was fractionated into hemicellulosic sugars and lignin by different types of resins. It was shown that CS components could be effectively fractionated through bisulfite pretreatment in combination with resin separation to produce bioethanol, hemicellulosic sugars, and lignosulfonate.


2012 ◽  
Vol 06 ◽  
pp. 745-750
Author(s):  
AI ASAKAWA ◽  
CHIZURU SASAKI ◽  
CHIKAKO ASADA ◽  
YOSHITOSHI NAKAMURA

Waste Shiitake (Lentinula edodes) mushroom medium, a lignocellulosic aglicultural residue, was evaluated as a fermentable substrate. 87% of the fermentable sugars remained in the waste mushroom medium. The sugar yield of the waste mushroom medium (46.3%) was higher than that of raw mushroom medium (20.3%) after 48 h of enzymatic saccharification by Meicelase because L. edodes changed wood structure. These results indicated that the waste mushroom medium is a suitable substrate for fermentation. Next, the efficient ethanol production using steam explosion pretreatment was studied. After 30 h of simultaneous saccharification and fermentation (SSF) using Meicelase and Saccharomyces cerevisiae AM12, 20.0 g/L ethanol was produced from 100 g/L water-insoluble residue of the waste mushroom medium treated at a steam pressure of 20 atm and a steaming time of 5 min. This corresponded to an ethanol yield of 77.0% of the theoretical, i.e. 14.7 g of ethanol obtained from 100 g of waste mushroom medium.


2014 ◽  
Vol 3 (4) ◽  
pp. 60 ◽  
Author(s):  
Alessia Tropea ◽  
David Wilson ◽  
Loredana G. La Torre ◽  
Rosario B. Lo Curto ◽  
Peter Saugman ◽  
...  

<p>There is great interest in producing bioethanol from biomass and there is much emphasis on exploiting lignocellulose sources, from crop wastes through to energy-rich crops. Some waste streams, however, contain both cellulosic and non-cellulosic sugars. These include wastes from pineapple processing.</p> <p>Pineapple wastes are produced in large amounts throughout the world by canning industries. These wastes are rich in intracellular sugars and plant cell walls which are composed mainly of cellulose, pectic substances and hemicelluloses. The purpose of this study was to investigate the potential to transform such residues into ethanol after enzymatic saccharification of plant cell walls, and fermentation of the resulting simple sugars using the <em>Saccharomyces cerevisiae</em> NCYC 2826 strain. Three different fermentation modes, direct fermentation, separate hydrolysis and fermentation, and simultaneous saccharification and fermentation of the biomass were tested and compared. The results show that the main sugars obtained from pineapple waste were: glucose, uronic acid, xylose, galactose, arabinose and mannose. The highest ethanol yield was achieved after 30 hours of simultaneous saccharification and fermentation, and reached up to 3.9% (v/v), corresponding to the 96% of the theoretical yield.</p>


2010 ◽  
Vol 171-172 ◽  
pp. 261-265
Author(s):  
Zhuang Zuo ◽  
Xiu Shan Yang

Corn stover was pretreated using different soaking conditions at mild temperature. Among the tested conditions, the best was 1% NaOH+8% NH4OH,50°C,48 h, Solid-to-liquid ratio 1:10. The results showed that soaking pretreatment achieved 63.6% delignification, retained the xylan and glucan. After enzymatic hydrolysis, conversion rates of xylan and glucan were 70.9% and 78.5%, respectively. The pretreated filtration re-soaking cause 52.7% xylan and 65.0% glucan conversion. NaOH+NH4OH treatment can be performed under mild conditions, gives a good buffering effect, low carbohydates degradation and extensive removal of lignin. Additionally, simultaneous saccharification and fermentation was conducted with pretreated corn stover to assess the ethanol production. For the whole process, 0.15g ethanol /g corn stover was achieved using Saccharomyces cerevisiae Y5, and 0.19g ethanol /g corn stover when using Pichia stipitis.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8662-8676
Author(s):  
Maria Mushtaq ◽  
Muhammad Javaid Asad ◽  
Muhammad Zeeshan Hyder ◽  
Syed Muhammad Saqlan Naqvi ◽  
Saad Imran Malik ◽  
...  

Utilization of biomass for production of second generation bioethanol was considered as a way to reduce burdens of fossil fuel in Pakistan. The materials wheat straw, rice straw, cotton stalk, corn stover, and peel wastes were used in this experiment. Various parameters, such as acidic and alkali pretreatment, enzymatic hydrolysis by cellulases, and effect of proteases inhibitors on ethanol production, were examined. Fermentation was completed by the yeasts Saccharomyces cerevisiae and Clostridium thermocellum separately, and their ethanol production were compared and maximum ethanol yield was obtained with wheat straw i.e.,11.3 g/L by S. cerevisiae and 8.5 g/L by C. thermocellum. Results indicated that a higher quantity of sugar was obtained from wheat straw (19.6 ± 1.6 g/L) followed by rice straw (17.6 ± 0.6 g/L) and corn stover (16.1 ± 0.9 g/L) compared to the other evaluated biomass samples. A higher yield of ethanol (11.3 g/L) was observed when a glucose concentration of 21.7 g/L was used, for which yeast fermentation efficiency was 92%. Results also revealed the increased in ethanol production (93%) by using celluases in combination with recombinant Serine protease inhibitors from C. thermocellum. It is expected that the use of recombinant serpins with cellulases will play a major role in the biofuel production by using agricultural biomass. This will also help in the economics of the biofuel.


Sign in / Sign up

Export Citation Format

Share Document