constant environment
Recently Published Documents


TOTAL DOCUMENTS

70
(FIVE YEARS 7)

H-INDEX

19
(FIVE YEARS 1)

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Christopher W Bakerlee ◽  
Angela M Phillips ◽  
Alex N Nguyen Ba ◽  
Michael M Desai

Evolutionary adaptation to a constant environment is driven by the accumulation of mutations which can have a range of unrealized pleiotropic effects in other environments. These pleiotropic consequences of adaptation can influence the emergence of specialists or generalists, and are critical for evolution in temporally or spatially fluctuating environments. While many experiments have examined the pleiotropic effects of adaptation at a snapshot in time, very few have observed the dynamics by which these effects emerge and evolve. Here, we propagated hundreds of diploid and haploid laboratory budding yeast populations in each of three environments, and then assayed their fitness in multiple environments over 1000 generations of evolution. We find that replicate populations evolved in the same condition share common patterns of pleiotropic effects across other environments, which emerge within the first several hundred generations of evolution. However, we also find dynamic and environment-specific variability within these trends: variability in pleiotropic effects tends to increase over time, with the extent of variability depending on the evolution environment. These results suggest shifting and overlapping contributions of chance and contingency to the pleiotropic effects of adaptation, which could influence evolutionary trajectories in complex environments that fluctuate across space and time.


Genetics ◽  
2021 ◽  
Author(s):  
Sachin Kaushik ◽  
Kavita Jain

Abstract Although many experimental and theoretical studies on natural selection have been carried out in a constant environment, as natural environments typically vary in time, it is important to ask if and how the results of these investigations are affected by a changing environment. Here, we study the properties of the conditional fixation time defined as the time to fixation of a new mutant that is destined to fix in a finite, randomly mating diploid population with intermediate dominance that is evolving in a periodically changing environment. It is known that in a static environment, the conditional mean fixation time of a co-dominant beneficial mutant is equal to that of a deleterious mutant with the same magnitude of selection coefficient. We find that this symmetry is not preserved, even when the environment is changing slowly. More generally, we find that the conditional mean fixation time of an initially beneficial mutant in a slowly changing environment depends weakly on the dominance coefficient and remains close to the corresponding result in the static environment. However, for an initially deleterious mutant under moderate and slowly varying selection, the fixation time differs substantially from that in a constant environment when the mutant is recessive. As fixation times are intimately related to the levels and patterns of genetic diversity, our results suggest that for beneficial sweeps, these quantities are only mildly affected by temporal variation in environment. In contrast, environmental change is likely to impact the patterns due to recessive deleterious sweeps strongly.


2021 ◽  
Author(s):  
Christopher W Bakerlee ◽  
Angela M Phillips ◽  
Alex N Nguyen Ba ◽  
Michael M Desai

Evolutionary adaptation to a constant environment is driven by the accumulation of mutations which can have a range of unrealized pleiotropic effects in other environments. These pleiotropic consequences of adaptation can influence the emergence of specialists or generalists, and are critical for evolution in temporally or spatially fluctuating environments. While many experiments have examined the pleiotropic effects of adaptation at a snapshot in time, very few have observed the dynamics by which these effects emerge and evolve. Here, we propagated hundreds of diploid and haploid laboratory budding yeast populations in each of three environments, and then assayed their fitness in multiple environments over 1000 generations of evolution. We find that replicate populations evolved in the same condition share common patterns of pleiotropic effects across other environments, which emerge within the first several hundred generations of evolution. However, we also find dynamic and environment-specific variability within these trends: variability in pleiotropic effects tends to increase over time, with the extent of variability depending on the evolution environment. These results suggest shifting and overlapping contributions of chance and contingency to the pleiotropic effects of adaptation, which could influence evolutionary trajectories in complex environments that fluctuate across space and time.


2020 ◽  
Author(s):  
Enzo Kingma ◽  
Eveline T. Diepeveen ◽  
Leila Iñigo de la Cruz ◽  
Liedewij Laan

AbstractPhenotypic plasticity confers a fitness advantage to an organism by tailoring phenotype to environmental circumstances. The extent to which phenotypic plasticity emerges as an adaptive response is still unknown, however it is predicted that the emergence and maintenance of phenotypic plasticity occurs only during evolution in fluctuating environments. Interestingly, experimental studies have shown that phenotypic plasticity can be preserved for several generations during evolution in a constant environment. Here, we evolve a mutant strain of Saccharomyces cerevisiae that has reduced plasticity in a constant and fluctuating environment. Subsequently we compared the adaptive response of the evolved cell, both at the phenotype and genotype level. As predicted by current theory, we find that evolution in a fluctuating environment results in a recovery of phenotypic plasticity. Surprisingly, evolution in a constant environment can lead to a similar recovery of plasticity due to a pleiotropic coupling of different traits. Thus, plasticity can emerge in both fluctuating and constant environments and its prevalence may mainly be determined by network structure. In addition, pleiotropic interactions may be an important structural component of biological networks that can facilitate the recovery of phenotypic plasticity without the requirement to continuously encounter environmental fluctuations.


2020 ◽  
Vol 86 (8) ◽  
Author(s):  
Dong-Dong Yang ◽  
Ashley Alexander ◽  
Margie Kinnersley ◽  
Emily Cook ◽  
Amy Caudy ◽  
...  

ABSTRACT The productivity of a biological community often correlates with its diversity. In the microbial world this phenomenon can sometimes be explained by positive, density-dependent interactions such as cross-feeding and syntrophy. These metabolic interactions help account for the astonishing variety of microbial life and drive many of the biogeochemical cycles without which life as we know it could not exist. While it is difficult to recapitulate experimentally how these interactions evolved among multiple taxa, we can explore in the laboratory how they arise within one. These experiments provide insight into how different bacterial ecotypes evolve and from these, possibly new “species.” We have previously shown that in a simple, constant environment a single clone of Escherichia coli can give rise to a consortium of genetically and phenotypically differentiated strains, in effect, a set of ecotypes, that coexist by cross-feeding. We marked these different ecotypes and their shared ancestor by integrating fluorescent protein into their genomes and then used flow cytometry to show that each evolved strain is more fit than the shared ancestor, that pairs of evolved strains are fitter still, and that the entire consortium is the fittest of all. We further demonstrate that the rank order of fitness values agrees with estimates of yield, indicating that an experimentally evolved consortium more efficiently converts primary and secondary resources to offspring than its ancestor or any member acting in isolation. IMPORTANCE Polymicrobial consortia occur in both environmental and clinical settings. In many cases, diversity and productivity correlate in these consortia, especially when sustained by positive, density-dependent interactions. However, the evolutionary history of such entities is typically obscure, making it difficult to establish the relative fitness of consortium partners and to use those data to illuminate the diversity-productivity relationship. Here, we dissect an Escherichia coli consortium that evolved under continuous glucose limitation in the laboratory from a single common ancestor. We show that a partnership consisting of cross-feeding ecotypes is better able to secure primary and secondary resources and to convert those resources to offspring than the ancestral clone. Such interactions may be a prelude to a special form of syntrophy and are likely determinants of microbial community structure in nature, including those having clinical significance such as chronic infections.


2019 ◽  
Vol 94 (6) ◽  
Author(s):  
Isabel Gallego ◽  
María Eugenia Soria ◽  
Carlos García-Crespo ◽  
Qian Chen ◽  
Patricia Martínez-Barragán ◽  
...  

ABSTRACT Previous studies documented that long-term hepatitis C virus (HCV) replication in human hepatoma Huh-7.5 cells resulted in viral fitness gain, expansion of the mutant spectrum, and several phenotypic alterations. In the present work, we show that mutational waves (changes in frequency of individual mutations) occurred continuously and became more prominent as the virus gained fitness. They were accompanied by an increasing proportion of heterogeneous genomic sites that affected 1 position in the initial HCV population and 19 and 69 positions at passages 100 and 200, respectively. Analysis of biological clones of HCV showed that these dynamic events affected infectious genomes, since part of the fluctuating mutations became incorporated into viable genomes. While 17 mutations were scored in 3 biological clones isolated from the initial population, the number reached 72 in 3 biological clones from the population at passage 200. Biological clones differed in their responses to antiviral inhibitors, indicating a phenotypic impact of viral dynamics. Thus, HCV adaptation to a specific constant environment (cell culture without external influences) broadens the mutant repertoire and does not focus the population toward a limited number of dominant genomes. A retrospective examination of mutant spectra of foot-and-mouth disease virus passaged in cell cultures suggests a parallel behavior here described for HCV. We propose that virus diversification in a constant environment has its basis in the availability of multiple alternative mutational pathways for fitness gain. This mechanism of broad diversification should also apply to other replicative systems characterized by high mutation rates and large population sizes. IMPORTANCE The study shows that extensive replication of an RNA virus in a constant biological environment does not limit exploration of sequence space and adaptive options. There was no convergence toward a restricted set of adapted genomes. Mutational waves and mutant spectrum broadening affected infectious genomes. Therefore, profound modifications of mutant spectrum composition and consensus sequence diversification are not exclusively dependent on environmental alterations or the intervention of population bottlenecks.


2019 ◽  
Author(s):  
Dong-Dong Yang ◽  
Ashley Alexander ◽  
Margie Kinnersley ◽  
Emily Cook ◽  
Amy Caudy ◽  
...  

ABSTRACTCommunity productivity often correlates with diversity. In the microbial world this phenomenon can sometimes be explained by highly-specific metabolic interactions that include cross-feeding and syntrophy. Such interactions help account for the astonishing variety of microbial life, and drive many of the biogeochemical cycles without which life as we know it could not exist. While it is difficult to recapitulate experimentally how these interactions evolved among multiple taxa, we can explore in the laboratory how they arise within one. These experiments provide insight into how different bacterial ecotypes evolve and from these, possibly new ‘species.’ We have previously shown that in a simple, constant environment a single clone ofE. colican give rise to a consortium of genetically-and physiologically-differentiated strains, in effect, a set of ecotypes, that coexist by cross-feeding. We marked these different ecotypes and their shared ancestor by integrating fluorescent protein into their genomes. We then used flow cytometry to show that each strain by itself is more fit than the shared ancestor, that pairs of evolved strains are fitter still, and that the entire consortium is fittest of all. We further demonstrate that the rank order of fitness values agrees with estimates of yield, indicating that an experimentally evolved consortium more efficiently converts resources to offspring than its ancestor or any member acting in isolation.ImportanceIn the microbial world, diversity and productivity of communities and consortia often correlate positively. However, it is challenging to tease apart a consortium whose members have co-evolved, and connect estimates of their fitness and the fitness of their ancestor(s) with estimates of productivity. Such analyses are prerequisite to understanding the evolutionary origins of all biological communities. Here we dissect anE. coliconsortium that evolved in the laboratory and show that cooperative interactions are favored under continuous glucose limitation because a partnership of ecotypes is better able to scavenge all available resources and more efficiently convert those resources to offspring than any single individual. Such interactions may be a prelude to a special form of syntrophy, and are likely to be key determinants of microbial community structure in nature, including those having clinical significance, such as chronic infections.


2018 ◽  
Vol 13 (3) ◽  
pp. 32 ◽  
Author(s):  
József Z. Farkas

The goal of this note is to present a general approach to define the net reproduction function for a large class of nonlinear physiologically structured population models. In particular, we are going to show that this can be achieved in a natural way by reformulating a nonlinear problem as a family of linear ones; each of the linear problems describing the evolution of the population in a different, but constant environment. The reformulation of a nonlinear population model as a family of linear ones is a new approach, and provides an elegant way to study qualitative questions, for example the existence of positive steady states. To define the net reproduction number for any fixed (constant) environment, i.e. for the linear models, we use a fairly recent spectral theoretic result, which characterizes the connection between the spectral bound of an unbounded operator and the spectral radius of a corresponding bounded operator. For nonlinear models, varying the environment naturally leads to a net reproduction function.


Nutrients ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 327 ◽  
Author(s):  
Aleida Song ◽  
Stuart Astbury ◽  
Abha Hoedl ◽  
Brent Nielsen ◽  
Michael Symonds ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document