weak boundary
Recently Published Documents


TOTAL DOCUMENTS

60
(FIVE YEARS 5)

H-INDEX

15
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ran Gao ◽  
Li-Zhen Guo

The segmentation of weak boundary is still a difficult problem, especially sensitive to noise, which leads to the failure of segmentation. Based on the previous works, by adding the boundary indicator function with L 2,1 norm, a new convergent variational model is proposed. A novel strategy for the weak boundary image is presented. The existence of the minimizer for our model is given, by using the alternating direction method of multipliers (ADMMs) to solve the model. The experiments show that our new method is robust in segmentation of objects in a range of images with noise, low contrast, and direction.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Lin-Qing Chen

Abstract Through the analysis of null symplectic structure, we derive the condition for integrable Virasoro generators on the covariant phase space of axisymmetric Killing horizons. A weak boundary condition selects a special relationship between the two temperatures for the putative CFT. When the integrability is satisfied for both future and past horizons, the two central charges are equal. At the end we discuss the physical implications.


2018 ◽  
Vol 2018 ◽  
pp. 1-12
Author(s):  
Yang Li ◽  
Wei Liang ◽  
Yinlong Zhang ◽  
Jindong Tan

Vertebrae computed tomography (CT) image automatic segmentation is an essential step for Image-guided minimally invasive spine surgery. However, most of state-of-the-art methods still require human intervention due to the inherent limitations of vertebrae CT image, such as topological variation, irregular boundaries (double boundary, weak boundary), and image noise. Therefore, this paper intentionally designed an automatic global level set approach (AGLSA), which is capable of dealing with these issues for lumbar vertebrae CT image segmentation. Unlike the traditional level set methods, we firstly propose an automatically initialized level set function (AILSF) that comprises hybrid morphological filter (HMF) and Gaussian mixture model (GMM) to automatically generate a smooth initial contour which is precisely adjacent to the object boundary. Secondly, a regularized level set formulation is introduced to overcome the weak boundary leaking problem, which utilizes the region correlation of histograms inside and outside the level set contour as a global term. Ultimately, a gradient vector flow (GVF) based edge-stopping function is employed to guarantee a fast convergence rate of the level set evolution and to avoid level set function oversegmentation at the same time. Our proposed approach has been tested on 115 vertebrae CT volumes of various patients. Quantitative comparisons validate that our proposed AGLSA is more accurate in segmenting lumbar vertebrae CT images with irregular boundaries and more robust to various levels of salt-and-pepper noise.


Sign in / Sign up

Export Citation Format

Share Document