Dual high-stroke and high–work capacity artificial muscles inspired by DNA supercoiling

2021 ◽  
Vol 6 (53) ◽  
pp. eabf4788
Author(s):  
Geoffrey M. Spinks ◽  
Nicolas D. Martino ◽  
Sina Naficy ◽  
David J. Shepherd ◽  
Javad Foroughi

Powering miniature robots using actuating materials that mimic skeletal muscle is attractive because conventional mechanical drive systems cannot be readily downsized. However, muscle is not the only mechanically active system in nature, and the thousandfold contraction of eukaryotic DNA into the cell nucleus suggests an alternative mechanism for high-stroke artificial muscles. Our analysis reveals that the compaction of DNA generates a mass-normalized mechanical work output exceeding that of skeletal muscle, and this result inspired the development of composite double-helix fibers that reversibly convert twist to DNA-like plectonemic or solenoidal supercoils by simple swelling and deswelling. Our modeling-optimized twisted fibers give contraction strokes as high as 90% with a maximum gravimetric work 36 times higher than skeletal muscle. We found that our supercoiling coiled fibers simultaneously provide high stroke and high work capacity, which is rare in other artificial muscles.

2021 ◽  
pp. 129703
Author(s):  
Sevketcan Sarikaya ◽  
Frank Gardea ◽  
Jeffrey T. Auletta ◽  
Jamshid Kavosi ◽  
Alex Langrock ◽  
...  

2021 ◽  
Vol 18 (184) ◽  
Author(s):  
Pedro B. C. Leal ◽  
Marcela Cabral-Seanez ◽  
Vikram B. Baliga ◽  
Douglas L. Altshuler ◽  
Darren J. Hartl

Skeletal muscle provides a compact solution for performing multiple tasks under diverse operational conditions, a capability lacking in many current engineered systems. Here, we evaluate if shape memory alloy (SMA) components can serve as artificial muscles with tunable mechanical performance. We experimentally impose cyclic stimuli, electric and mechanical, to an SMA wire and demonstrate that this material can mimic the response of the avian humerotriceps, a skeletal muscle that acts in the dynamic control of wing shapes. We next numerically evaluate the feasibility of using SMA springs as artificial leg muscles for a bipedal walking robot. Altering the phase offset between mechanical and electrical stimuli was sufficient for both synthetic and natural muscle to shift between actuation, braking and spring-like behaviour.


1988 ◽  
Vol 65 (1) ◽  
pp. 256-263 ◽  
Author(s):  
W. T. Willis ◽  
P. R. Dallman ◽  
G. A. Brooks

We investigated physiological and biochemical factors associated with the improved work capacity of trained iron-deficient rats. Female 21-day-old rats were assigned to one of four groups, two dietary groups (50 and 6 ppm dietary iron) subdivided into two levels of activity (sedentary and treadmill trained). Iron deficiency decreased hemoglobin (61%), maximal O2 uptake. (VO2max) (40%), skeletal muscle mitochondrial oxidase activities (59-90%), and running endurance (94%). In contrast, activities of tricarboxylic acid (TCA) cycle enzymes in skeletal muscle were largely unaffected. Four weeks of mild training in iron-deficient rats resulted in improved blood lactate homeostasis during exercise and increased VO2max (15%), TCA cycle enzymes of skeletal muscle (27-58%) and heart (29%), and liver NADH oxidase (34%) but did not affect any of these parameters in the iron-sufficient animals. In iron-deficient rats training affected neither the blood hemoglobin level nor any measured iron-dependent enzyme pathway of skeletal muscle but substantially increased endurance (230%). We conclude that the training-induced increase in endurance in iron-deficient rats may be related to cardiovascular improvements, elevations in liver oxidative capacity, and increases in the activities of oxidative enzymes that do not contain iron in skeletal and cardiac muscle.


2011 ◽  
Vol 186 ◽  
pp. 31-35 ◽  
Author(s):  
Fei Li ◽  
Yu Wang ◽  
He Ting Tong ◽  
Ray P.S. Han

As a skeletal muscle-like actuator, PAM possesses many unique advantages. They include compliance and high power-to-weight ratio, which make it an ideal actuator for robotic and powered exoskeleton applications. But its flexible braided mesh shell and the compressibility of air make PAM much more difficult to model and control compared to traditional actuators. In this work, the mechanical properties of the McKibben PAM produced by Festo are examined, tested and discussed. The results demonstrate the muscle-like property of PAM and its strong non-linear and hysteresis behaviors. A simple law between the areas of the hysteresis and pressure is proposed, and the relationships of the areas of the hysteresis, external load and the continuous working time are studied. Further, changing the PAM length that is smaller than 0.4 mm may lead to the “crawl” phenomenon. Finally, the empirical results can be used in compensation-based controls of the hysteresis in the McKibben PAM.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Thomas Baasch‐Skytte ◽  
Thomas P. Gunnarsson ◽  
Matteo Fiorenza ◽  
Jens Bangsbo

2010 ◽  
Vol 298 (2) ◽  
pp. H375-H384 ◽  
Author(s):  
Lucile Vincent ◽  
Léonard Féasson ◽  
Samuel Oyono-Enguéllé ◽  
Viviane Banimbek ◽  
Christian Denis ◽  
...  

The influence of sickle cell trait and/or α-thalassemia on skeletal muscle microvascular network characteristics was assessed and compared with control subjects [hemoglobin (Hb) AA] in 30 Cameroonian residents [10 HbAA, 5 HbAA α-thalassemia (α-t), 6 HbAS, and 9 HbASα-t] matched for maximal work capacity and daily energy expenditure. Subjects performed an incremental exercise to exhaustion and underwent a muscle biopsy. Muscle fiber type and surface area were not different among groups. However, sickle cell trait (SCT) was associated with lower capillary density ( P < 0.05), lower capillary tortuosity ( P < 0.001), and enlarged microvessels ( P < 0.01). SCT carriers had reduced counts of microvessels <5-μm diameter, but a higher percentage of broader microvessels, i.e., diameter >10 μm ( P < 0.05). α-Thalassemia seemed to be characterized by a higher capillary tortuosity and unchanged capillary density and diameter. Thus, while SCT is a priori clinically benign, we demonstrate for the first time that significant remodeling of the microvasculature occurs in SCT carriers. These modifications may possibly reflect protective adaptations against hemorheological and microcirculatory dysfunction induced by the presence of HbS. The remodeling of the microvascular network occurs to a lesser extent in α-thalassemia. In α-thalassemic subjects, increased capillary tortuosity would promote oxygen supply to muscle tissues and might compensate for the lower Hb content often reported in those subjects.


1985 ◽  
Vol 107 (4) ◽  
pp. 931-937 ◽  
Author(s):  
J. D. Bryce ◽  
M. R. Litchfield ◽  
N. P. Leversuch

This paper describes the design and testing of a high work capacity single-stage transonic turbine of aerodynamic duty tailored to the requirements of driving the high-pressure core of a low cost turbofan engine. Aerodynamic loading was high for this duty (ΔH/U2 = 2.1) and a major objective in the design was the control of the resulting transonic flow to achieve good turbine performance. Practical and coolable blading was a design requirement. At the design point (pressure ratio = 4.48), a turbine total to total efficiency of 87.0 percent was measured—this being based on measured shaft power and a tip clearance of 1.4 percent of blade height. In addition, the turbine was comprehensively instrumented to allow measurement of aerofoil surface static pressures on both stator and rotor—the latter being expedited via a rotating scanivalve system. Downstream area traverses were also conducted. Analysis of these measurements indicates that the turbine operates at overall reaction levels lower than design but the rotor blade performs efficiently.


2012 ◽  
Vol 23 (3) ◽  
pp. 225-253 ◽  
Author(s):  
Bertrand Tondu

The so-called McKibben artificial muscle is one of the most efficient and currently one of the most widely used fluidic artificial muscles, due to the simplicity of its design, combining ease of implementation and analogous behaviour with skeletal muscles. Its working principle is very simple: The circumferential stress of a pressurized inner tube is transformed into an axial contraction force by means of a double-helix braided sheath whose geometry corresponds to a network of identical pantographs. However, behind this apparent simplicity lie two phenomena, which must be considered so as to fully understand how the McKibben muscle works. First, the non-linear relationship between stress and strain inside the inner tube elastomer, together with the complex relationship between physical artificial muscle parameters and its effective working pressure range. Second, the behaviour of the braided sheath which acts like a ‘flexible joint structure’ able to adapt itself during contraction to the increasing radius muscle in its middle portion, with the boundary constraint of rigid tips. By distinguishing an ideal model with a zero inner tube thickness from a real model with a non-zero inner tube thickness, we attempted to synthesize static models by including and excluding an elastic force component. However, we also highlight the possible need, in further modelling, to distinguish modelling thin-walled from thick-walled inner tube McKibben muscles. In our attempt to understand the hysteresis peculiar to the muscle, it seems, resulting from our review, that this hysteresis phenomenon is essentially due to strand-on-strand friction inside the weave. Nevertheless, although Hertz’s contact theory has shown its relevance in tackling this problem, friction modelling in a McKibben muscle is particularly hard due to the difficulties, first, to correctly determine the real contact surface strand-on-strand and, second, to estimate the friction coefficient and its possible dependence on pressure and velocity with the weaving peculiar to McKibben braided sheaths. We propose in a future approach to better integrate textile physics into this very complex modelling problem. Moreover, because we consider friction to be velocity-dependent, a distinction between static and dynamic modelling appears necessary to us and can help, in our view, towards a better understanding of the Hill-like character (or not) debate concerning artificial muscles.


Sign in / Sign up

Export Citation Format

Share Document