Modeling the sulfide saturation in continuously assimilating magmatic systems with the Magma Chamber Simulator

Author(s):  
Ville Virtanen ◽  
Jussi Heinonen ◽  
Nicholas Barber ◽  
Ferenc Molnár

<p>The timing and degree of immiscible sulfide precipitation in a magma effectively controls the formation of magmatic sulfide deposits and the budget of degassing sulfur species in volcanic systems. Besides the absolute sulfur (S) content, sulfide precipitation is strongly affected by the sulfur content at sulfide saturation (SCSS) in the host silicate melt. Assimilation of S-rich wall-rocks, such as black shales, effectively increases the S content in the magma, while simultaneously lowering the SCSS. Accordingly, assimilation has been identified as the most important process in the formation of many economically significant magmatic base metal sulfide deposit, especially in continental tectonic settings. Detailed understanding of the relation between wall-rock assimilation and sulfide saturation requires accurate thermodynamic models for open magmatic systems experiencing assimilation-fractional crystallization (AFC).</p><p>The Magma Chamber Simulator (MCS) is currently the only geochemical modeling software that considers the thermodynamic phase equilibria in open magmatic systems involving magma and wall-rock (and recharge) subsystems. We utilized the MCS to explore how assimilation affects the SCSS and S content of the magma. With the current lack of thermodynamic data for sulfides, we tentatively modeled S as a trace element and varied its compatibility to wall-rock in the different models. For a case study, we chose the mafic layered intrusions of Duluth Complex, Minnesota, which host some of the largest Cu-Ni sulfide deposits in the world. Assimilation of the adjacent black shale has been established as the main source for S in the deposits.</p><p>Our MCS models show in detail how continuous assimilation of the black shale lowers the SCSS of the melt. Partial melt from the black shale enriches the magma in SiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>, K<sub>2</sub>O, and H<sub>2</sub>O, while depleting FeO, MgO, CaO, and Na<sub>2</sub>O, which causes a first order decrease in the SCSS. The compositional change also replaces troctolitic cumulates (plagioclase, olivine ± clinopyroxene) with norite (plagioclase and orthopyroxene), which leads to more pronounced FeO depletion in the melt, further lowering the SCSS. On the other hand, the assimilated partial melt also increases the melt mass in the magma subsystem, which counteracts the S enrichment. Accordingly, in the model where S is compatible to the wall-rock residual, the degree of sulfide saturation only slightly increases relative to the same magma experiencing FC without assimilation.</p><p>More than half of the wall-rock S must partition to the assimilated partial melt in order to meet the S isotopic criteria of the modeled Cu-Ni-deposits. The main stage of sulfide precipitation is associated with ~30 wt.% crystallization of the assimilating host magma. The proportion of sulfides relative to silicates in these models is smaller than observed in the Duluth Complex deposits, which underlines the role of dynamic processes in concentrating sulfides from the silicate magma.</p>

Geophysics ◽  
2001 ◽  
Vol 66 (3) ◽  
pp. 824-835 ◽  
Author(s):  
David Johnson ◽  
Elena Cherkaev ◽  
Cynthia Furse ◽  
Alan C. Tripp

The finite‐difference time‐domain method is used for high‐resolution full‐wave analysis of cross‐borehole electromagnetic surveys of buried nickel sulfide deposits. The method is validated against analytical methods for simple cases, but is shown to be a valuable tool for analysis of complicated geological structures such as faulted or layered regions. The magnetic fields generated by a wire loop in a borehole near a nickel sulfide deposit are presented for several cases. The full‐wave solution is obtained up to 200 MHz, where quasi‐static methods would have failed. The dielectric response is included in the solution, and the diffractive nature of the field is observed. The sensitivity of each receiver in a vertical line in the cross borehole is presented and analyzed to provide an optimal weighting for receivers that can be applied to an experimental study.


2019 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
Michael Iannicelli

Even though the author already incorporated the citation of Sinninghe-Damste & Schouten (2006) into the text of the paper, the author regrets having failed to include their full citation within the Reference Section of my above paper which is: Sinninghe-Damste, J. S. & Schouton, S. (2006). Biological markers for anoxia in the photic zone of the water column. In, Volkman, J. K. (ed.), Marine Organic Matter: Biomarkers, Isotopes and DNA, (pp. 127 – 163). The Handbook of Environmental Chemistry, vol. 2N. Springer: Berlin and Heidelberg. https://doi.org/10.1007/698_2_005 The author also needs to paraphrase a statement made in the last three lines of the 2nd paragraph on page 40 where it reads as: “Thus, we may conclude here that paleo-upfreezing of any conodont-element(s) originally buried in the pre-lithified, light-colored shale occurred in order to account for their presence in black shale”. Instead, in lieu of that statement, it should read as “At this point in time of the study, we may tentatively conclude here while completely concluding later in the study, that conodont-elements originally existing in the underlying, pre-lithified, light-colored shale, had to paleo-upfreeze vertically upward into pre-lithified, black shale sediment in order to account for their presence in lithified black shale”.


2013 ◽  
Vol 868 ◽  
pp. 192-195
Author(s):  
Tuo Lin ◽  
Jin Chuan Zhang ◽  
Bo Li ◽  
Wei He ◽  
Xuan Tang

The Lower Silurian marine shale is widely distributed in Northwestern Hunan and features in a large thickness of dark shale showed at outcrops. However, the accumulation conditions and gas content is unknown. The sedimentary facies, thickness and distribution, organic matter types and content, maturity, reservoir properties and gas content of the Lower Silurian black shale in Northwestern Hunan were investigated by field observation, sampling and experimental analysis. The results show that the black shales sedimentary environment is deep water continental shelf, with featured in abundant fossil. The burial depth of the Lower Silurian black shale is 0-3000 m, and its thickness is 10-40m while the average TOC is 1.0% and average Ro is 2.9%. For the disadvantaged sedimentary facies and shallow depth, the maximum gas content of the Lower Silurian black shale from well site desorption test is 0.59m3/t only, but the result of isothermal adsorption simulate test show that the Lower Silurian black shale have a good adsorption capacity, and can generate a large number of shale gas in Northwestern Hunan where better deposition conditions and suitable depth exist in.


Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 449
Author(s):  
Kirill S. Ivanov ◽  
Valery V. Maslennikov ◽  
Dmitry A. Artemyev ◽  
Aleksandr S. Tseluiko

In the Bazhenov Formation, framboidal clusters and nodular pyrite formed in the dysoxic–anoxic interface within organic-rich sediments. Some nodule-like pyritized bituminous layers and pyrite nodules are similar to pyritized microbial mat fragments by the typical fine laminated structure. Framboidal pyrite of the Bazhenov Formation is enriched in redox-sensitive elements such as Mo, V, Au, Cu, Pb, Ag, Ni, Se, and Zn in comparison with the host shales and nodular pyrite. Nodular pyrite has higher concentrations of As and Sb, only. Strong positive correlations that can be interpreted as nano-inclusions of organic matter (Mo, V, Au), sphalerite (Zn, Cd, Hg, Sn, In, Ga, Ge), galena (Pb, Bi, Sb, Te, Ag, Tl), chalcopyrite (Cu, Se) and tennantite (Cu, As, Sb, Bi, Te, Ag, Tl) and/or the substitution of Co, Ni, As and Sb into the pyrite. On the global scale, pyrite of the Bazhenov Formation is very similar to pyrite from highly metalliferous bituminous black shales, associated, as a rule, with gas and oil-and-gas deposits. Enrichment with Mo and lower Co and heavy metals indicate a higher influence of seawater during formation of pyrite from the Bazhenov Formation in comparison to different styles of ore deposits. Transitional elements such as Zn and Cu in pyrite of the Bazhenov Formation has resulted from either a unique combination of the erosion of Cu–Zn massive sulfide deposits of the Ural Mountains from one side and the simultaneous manifestation of organic-rich gas seep activity in the West Siberian Sea from another direction.


Minerals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 970
Author(s):  
Yao Ma ◽  
Jiangnan Zhao ◽  
Yu Sui ◽  
Shili Liao ◽  
Zongyao Zhang

As a product of hydrothermal activity, seafloor polymetallic sulfide deposit has become the focus of marine mineral exploration due to its great prospects for mineralization potential. The mineral prospectivity mapping is a multiple process that involves weighting and integrating evidential layers to further explore the potential target areas, which can be categorized into data-driven and knowledge-driven methods. This paper describes the application of fuzzy logic and fuzzy analytic hierarchy process (AHP) models to process the data of the Southwest Indian Ocean Mid-Ridge seafloor sulfide deposit and delineate prospect areas. Nine spatial evidential layers representing the controlling factors for the formation and occurrence of polymetallic sulfide deposit were extracted to establish a prospecting prediction model. Fuzzy logic and fuzzy AHP models combine expert experience and fuzzy sets to assign weights to each layer and integrate the evidence layers to generate prospectivity map. Based on prediction-area (P-A) model, the optimal gamma operator (γ) values were determined to be 0.95 and 0.90 for fuzzy logic and fuzzy AHP to synthesize the evidence layers. The concentration-area (C-A) fractal method was used to classify different levels of metallogenic probability by determining corresponding thresholds. Finally, Receiver Operating Characteristic (ROC) curves were applied to measure the performance of the two prospectivity models. The results show that the areas under the ROC curve of the fuzzy logic and the fuzzy AHP model are 0.813 and 0.887, respectively, indicating that prediction based on knowledge-driven methods can effectively predict the metallogenic favorable area in the study area, opening the door for future exploration of seafloor polymetallic sulfide deposits.


2002 ◽  
Vol 38 (1) ◽  
pp. 39-66 ◽  
Author(s):  
Jan Pašava ◽  
Bohdan Kříbek ◽  
Petr Dobeš ◽  
Ivan Vavřín ◽  
Karel Žák ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document