tibial defect
Recently Published Documents


TOTAL DOCUMENTS

83
(FIVE YEARS 14)

H-INDEX

13
(FIVE YEARS 1)

BMC Surgery ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Yimurang Hamiti ◽  
Maimaiaili Yushan ◽  
Cheng Lu ◽  
Aihemaitijiang Yusufu

Abstract Objective To evaluate clinical outcomes of the application of induced membrane followed by trifocal bone transport technique in the treatment of massive tibial defect caused by osteomyelitis. Method A total of 18 eligible patients with tibial defect > 6 cm caused by osteomyelitis who were admitted to our institution from January 2010 to January 2016 and treated by induced membrane followed by trifocal bone transport technique. There were 12 male and 6 females with an average age of 40.4 years old. A detailed demographic data (age, sex, etiology, previous operation time, defect size and location, interval from Masquelet technique to trifocal bone transport technique, external fixation index (EFI), duration of regenerate consolidation and docking union) were collected, bone and functional outcomes were evaluated by Association for the Study and Application of the Method of Ilizarov (ASAMI) scoring system. Complications during and in the period of follow up were recorded and evaluated by Paley classification at a minimum follow-up of 2 years. Results The etiology include posttraumatic osteomyelitis in 13 cases and primary osteomyelitis in 5 cases. An average of previous operation time was 3.4 times. Mean tibial defect after radical debridement was 6.8 cm. An average interval duration from formation of induced membrane to trifocal bone transport was 4.8 weeks. An average of EFI was 37.1 days/cm, the duration of regenerate consolidation and docking union were 124.7 days and 186.4 days, respectively. An average time of follow-up after removal of external fixator was 28.5 month without recurrence of osteomyelitis. The bony outcome was excellent in 6 cases, good in 8 cases, fair in 3 cases and poor in 1 case, and functional outcome was excellent in 4 cases, good in 10 cases, fair in 2 cases and poor in 2 cases. The most common complication was pin tract infection which occurred in 15 cases and there were no major complications such as nerve or vascular injury. Conclusion Massive tibial defect caused by osteomyelitis can be successfully treated first stage using induced membrane followed by second stage using trifocal bone transport technique, which is an effective method in terms of radical elimination of osteomyelitis with expected clinical outcomes.


2021 ◽  
Vol 48 (6) ◽  
pp. 699-702
Author(s):  
Eon Su Kim ◽  
Chae Eun Yang ◽  
Jiye Kim ◽  
Sug Won Kim

Extensive bone loss associated with severe vascular injury remains a challenge for lower extremity reconstruction. The fibular free flap has been utilized for many decades to reconstruct long-segment tibial defects. We present an unusual scenario of unilateral weight-bearing, wherein we salvaged the sole lower extremity by transfer of the fractured ipsilateral fibula and a bipedicled skin flap. A 38-year-old man sustained a severe crush injury in the right leg with loss of circulation. His left lower leg had a soft tissue defect measuring 20×15 cm with an exposed comminuted fracture and a 17-cm tibial defect, along with a segmental fracture of the fibula. Subsequently, we reconstructed the tibial defect by transferring a 17-cm-long section of the ipsilateral fibula. We covered the soft tissue defect with a bipedicled skin flap. The patient eventually began to ambulate independently after surgery.


2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Mahmoud M. Fayed ◽  
Wael Ayad ◽  
Mostafa I. Awad ◽  
Fahad Abdulazeez Hayyawi ◽  
Hossam H. Alkasmazy ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Raluca M. Boteanu ◽  
Viorel I. Suica ◽  
Luminita Ivan ◽  
Florentina Safciuc ◽  
Elena Uyy ◽  
...  

Abstract Due to their excellent mechanical and biocompatibility properties, titanium-based implants are successfully used as biomedical devices. However, when new bone formation fails for different reasons, impaired fracture healing becomes a clinical problem and affects the patient's quality of life. We aimed to design a new bioactive surface of titanium implants with a synergetic PEG biopolymer-based composition for gradual delivery of growth factors (FGF2, VEGF, and BMP4) during bone healing. The optimal architecture of non-cytotoxic polymeric coatings deposited by dip coating under controlled parameters was assessed both in cultured cells and in a rat tibial defect model (100% viability). Notably, the titanium adsorbed polymer matrix induced an improved healing process when compared with the individual action of each biomolecules. High-performance mass spectrometry analysis demonstrated that recovery after a traumatic event is governed by specific differentially regulated proteins, acting in a coordinated response to the external stimulus. Predicted protein interactions shown by STRING analysis were well organized in hub-based networks related with response to chemical, wound healing and response to stress pathways. The proposed functional polymer coatings of the titanium implants demonstrated the significant improvement of bone healing process after injury.


Sign in / Sign up

Export Citation Format

Share Document