loop conformations
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 19)

H-INDEX

20
(FIVE YEARS 2)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christopher R. Corbeil ◽  
Mahder Seifu Manenda ◽  
Traian Sulea ◽  
Jason Baardsnes ◽  
Marie-Ève Picard ◽  
...  

AbstractThe design of superior biologic therapeutics, including antibodies and engineered proteins, involves optimizing their specific ability to bind to disease-related molecular targets. Previously, we developed and applied the Assisted Design of Antibody and Protein Therapeutics (ADAPT) platform for virtual affinity maturation of antibodies (Vivcharuk et al. in PLoS One 12(7):e0181490, 10.1371/journal.pone.0181490, 2017). However, ADAPT is limited to point mutations of hot-spot residues in existing CDR loops. In this study, we explore the possibility of wholesale replacement of the entire H3 loop with no restriction to maintain the parental loop length. This complements other currently published studies that sample replacements for the CDR loops L1, L2, L3, H1 and H2. Given the immense sequence space theoretically available to H3, we focused on the virtual grafting of over 5000 human germline-derived H3 sequences from the IGMT/LIGM database increasing the diversity of the sequence space when compared to using crystalized H3 loop sequences. H3 loop conformations are generated and scored to identify optimized H3 sequences. Experimental testing of high-ranking H3 sequences grafted into the framework of the bH1 antibody against human VEGF-A led to the discovery of multiple hits, some of which had similar or better affinities relative to the parental antibody. In over 75% of the tested designs, the re-designed H3 loop contributed favorably to overall binding affinity. The hits also demonstrated good developability attributes such as high thermal stability and no aggregation. Crystal structures of select re-designed H3 variants were solved and indicated that although some deviations from predicted structures were seen in the more solvent accessible regions of the H3 loop, they did not significantly affect predicted affinity scores.


Author(s):  
Amélie Barozet ◽  
Kevin Molloy ◽  
Marc Vaisset ◽  
Christophe Zanon ◽  
Pierre Fauret ◽  
...  

Abstract Summary MoMA-LoopSampler is a sampling method that globally explores the conformational space of flexible protein loops. It combines a large structural library of three-residue fragments and a novel reinforcement-learning-based approach to accelerate the sampling process while maintaining diversity. The method generates a set of statistically-likely loop states satisfying geometric constraints, and its ability to sample experimentally observed conformations has been demonstrated. This paper presents a web user interface to MoMA-LoopSampler through the illustration of a typical use-case. Availability MoMA-LoopSampler is freely available at: https://moma.laas.fr/applications/LoopSampler/ We recommend users to create an account, but anonymous access is possible. In most cases, jobs are completed within a few minutes. The waiting time may increase depending on the server load, but it very rarely exceeds an hour. For users requiring more intensive use, binaries can be provided upon request. Supplementary information Supplementary data are available at Bioinformatics online.


2021 ◽  
Author(s):  
Cody Krivacic ◽  
Kale Kundert ◽  
Xingjie Pan ◽  
Roland A Pache ◽  
Lin Liu ◽  
...  

Accurate positioning of functional residues is critical for the design of new protein functions, but has remained difficult because of the prevalence of irregular local geometries in active sites. Here we introduce two computational methods that build local protein geometries from sequence with atomic accuracy: fragment kinematic closure (FKIC) and loophash kinematic closure (LHKIC). FKIC and LHKIC integrate two approaches: robotics-inspired kinematics of protein backbones and insertion of peptide fragments, and show up to 140-fold improvements in native-like predictions over either approach alone. We then integrate these methods into a new design protocol, pull-into-place (PIP), to position functionally important sidechains via design of new structured loop conformations. We validate PIP by remodeling a sizeable active site region in an enzyme and confirming the engineered new conformations of two designs with crystal structures. The described methods can be applied broadly to the design of many new protein geometries and functions.


2021 ◽  
Vol 12 ◽  
Author(s):  
Monica L. Fernández-Quintero ◽  
Katharina B. Kroell ◽  
Florian Hofer ◽  
Jakob R. Riccabona ◽  
Klaus R. Liedl

Characterizing and understanding the antibody binding interface have become a pre-requisite for rational antibody design and engineering. The antigen-binding site is formed by six hypervariable loops, known as the complementarity determining regions (CDRs) and by the relative interdomain orientation (VH–VL). Antibody CDR loops with a certain sequence have been thought to be limited to a single static canonical conformation determining their binding properties. However, it has been shown that antibodies exist as ensembles of multiple paratope states, which are defined by a characteristic combination of CDR loop conformations and interdomain orientations. In this study, we thermodynamically and kinetically characterize the prominent role of residue 71H (Chothia nomenclature), which does not only codetermine the canonical conformation of the CDR-H2 loop but also results in changes in conformational diversity and population shifts of the CDR-H1 and CDR-H3 loop. As all CDR loop movements are correlated, conformational rearrangements of the heavy chain CDR loops also induce conformational changes in the CDR-L1, CDR-L2, and CDR-L3 loop. These overall conformational changes of the CDR loops also influence the interface angle distributions, consequentially leading to different paratope states in solution. Thus, the type of residue of 71H, either an alanine or an arginine, not only influences the CDR-H2 loop ensembles, but co-determines the paratope states in solution. Characterization of the functional consequences of mutations of residue 71H on the paratope states and interface orientations has broad implications in the field of antibody engineering.


2021 ◽  
Vol 77 (3) ◽  
pp. 325-335
Author(s):  
Florian C. Grau ◽  
Andreas Burkovski ◽  
Yves A. Muller

PII proteins are ubiquitous signaling proteins that are involved in the regulation of the nitrogen/carbon balance in bacteria, archaea, and some plants and algae. Signal transduction via PII proteins is modulated by effector molecules and post-translational modifications in the PII T-loop. Whereas the binding of ADP, ATP and the concomitant binding of ATP and 2-oxoglutarate (2OG) engender two distinct conformations of the T-loop that either favor or disfavor the interaction with partner proteins, the structural consequences of post-translational modifications such as phosphorylation, uridylylation and adenylylation are far less well understood. In the present study, crystal structures of the PII protein GlnK from Corynebacterium glutamicum have been determined, namely of adenylylated GlnK (adGlnK) and unmodified unadenylylated GlnK (unGlnK). AdGlnK has been proposed to act as an inducer of the transcription repressor AmtR, and the adenylylation of Tyr51 in GlnK has been proposed to be a prerequisite for this function. The structures of unGlnK and adGlnK allow the first atomic insights into the structural implications of the covalent attachment of an AMP moiety to the T-loop. The overall GlnK fold remains unaltered upon adenylylation, and T-loop adenylylation does not appear to interfere with the formation of the two major functionally important T-loop conformations, namely the extended T-loop in the canonical ADP-bound state and the compacted T-loop that is adopted upon the simultaneous binding of Mg-ATP and 2OG. Thus, the PII-typical conformational switching mechanism appears to be preserved in GlnK from C. glutamicum, while at the same time the functional repertoire becomes expanded through the accommodation of a peculiar post-translational modification.


2021 ◽  
pp. 166893
Author(s):  
Thomas G.M. Schmidt ◽  
Andreas Eichinger ◽  
Markus Schneider ◽  
Lidia Bonet ◽  
Uwe Carl ◽  
...  

Viruses ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 101
Author(s):  
Mario Mietzsch ◽  
Ariana Jose ◽  
Paul Chipman ◽  
Nilakshee Bhattacharya ◽  
Nadia Daneshparvar ◽  
...  

The capsid structures of most Adeno-associated virus (AAV) serotypes, already assigned to an antigenic clade, have been previously determined. This study reports the remaining capsid structures of AAV7, AAV11, AAV12, and AAV13 determined by cryo-electron microscopy and three-dimensional image reconstruction to 2.96, 2.86, 2.54, and 2.76 Å resolution, respectively. These structures complete the structural atlas of the AAV serotype capsids. AAV7 represents the first clade D capsid structure; AAV11 and AAV12 are of a currently unassigned clade that would include AAV4; and AAV13 represents the first AAV2-AAV3 hybrid clade C capsid structure. These newly determined capsid structures all exhibit the AAV capsid features including 5-fold channels, 3-fold protrusions, 2-fold depressions, and a nucleotide binding pocket with an ordered nucleotide in genome-containing capsids. However, these structures have viral proteins that display clade-specific loop conformations. This structural characterization completes our three-dimensional library of the current AAV serotypes to provide an atlas of surface loop configurations compatible with capsid assembly and amenable for future vector engineering efforts. Derived vectors could improve gene delivery success with respect to specific tissue targeting, transduction efficiency, antigenicity or receptor retargeting.


2020 ◽  
Author(s):  
Kevin Li ◽  
Liliya Yatsunyk ◽  
Stephen Neidle

Abstract Quadruplex DNAs can fold into a variety of distinct topologies, depending in part on loop types and orientations of individual strands, as shown by high-resolution crystal and NMR structures. Crystal structures also show associated water molecules. We report here on an analysis of the hydration arrangements around selected folded quadruplex DNAs, which has revealed several prominent features that re-occur in related structures. Many of the primary-sphere water molecules are found in the grooves and loop regions of these structures. At least one groove in anti-parallel and hybrid quadruplex structures is long and narrow and contains an extensive spine of linked primary-sphere water molecules. This spine is analogous to but fundamentally distinct from the well-characterized spine observed in the minor groove of A/T-rich duplex DNA, in that every water molecule in the continuous quadruplex spines makes a direct hydrogen bond contact with groove atoms, principally phosphate oxygen atoms lining groove walls and guanine base nitrogen atoms on the groove floor. By contrast, parallel quadruplexes do not have extended grooves, but primary-sphere water molecules still cluster in them and are especially associated with the loops, helping to stabilize loop conformations.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
V. Ambrus ◽  
Gy. Hoffka ◽  
M. Fuxreiter

Abstract The importance of dynamic factors in enzyme evolution is gaining recognition. Here we study how the evolution of a new enzymatic activity exploits conformational tinkering and demonstrate that conversion of a dimeric phosphotriesterase to an arylesterase in Pseudomonas diminuta is accompanied by structural divergence between the two subunits. Deviations in loop conformations increase with promiscuity, leading to functionally distinct states, while they decrease during specialisation for the new function. We show that opposite loop movements in the two subunits are due to a dynamic coupling with the dimer interface, the importance of which is also corroborated by the co-evolution of the loop and interface residues. These results illuminate how protein dynamics promotes conformational heterogeneity in a dimeric enzyme, leading to alternative evolutionary pathways for the emergence of a new function.


Sign in / Sign up

Export Citation Format

Share Document