The role of carboxylic groups in heparin-mimicking polymer-functionalized surfaces for blood compatibility: enhanced vascular cell selectivity

Author(s):  
Aiyang Zhang ◽  
Wei Sun ◽  
Xinyi Liang ◽  
Xianshuang Chen ◽  
Yuepeng Li ◽  
...  
2004 ◽  
Vol 78 ◽  
pp. 741-742
Author(s):  
I Rama ◽  
M Riera ◽  
J Torras ◽  
J M Cruzado ◽  
I Herrero-Fresneda ◽  
...  

Blood ◽  
2019 ◽  
Vol 133 (3) ◽  
pp. 224-236 ◽  
Author(s):  
Andrés García-García ◽  
Claudia Korn ◽  
María García-Fernández ◽  
Olivia Domingues ◽  
Javier Villadiego ◽  
...  

AbstractHematopoietic stem and progenitor cells (HSPCs) and leukocytes circulate between the bone marrow (BM) and peripheral blood following circadian oscillations. Autonomic sympathetic noradrenergic signals have been shown to regulate HSPC and leukocyte trafficking, but the role of the cholinergic branch has remained unexplored. We have investigated the role of the cholinergic nervous system in the regulation of day/night traffic of HSPCs and leukocytes in mice. We show here that the autonomic cholinergic nervous system (including parasympathetic and sympathetic) dually regulates daily migration of HSPCs and leukocytes. At night, central parasympathetic cholinergic signals dampen sympathetic noradrenergic tone and decrease BM egress of HSPCs and leukocytes. However, during the daytime, derepressed sympathetic noradrenergic activity causes predominant BM egress of HSPCs and leukocytes via β3–adrenergic receptor. This egress is locally supported by light-triggered sympathetic cholinergic activity, which inhibits BM vascular cell adhesion and homing. In summary, central (parasympathetic) and local (sympathetic) cholinergic signals regulate day/night oscillations of circulating HSPCs and leukocytes. This study shows how both branches of the autonomic nervous system cooperate to orchestrate daily traffic of HSPCs and leukocytes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Brandi Cron ◽  
Jennifer L. Macalady ◽  
Julie Cosmidis

This work shines light on the role of extracellular polymeric substance (EPS) in the formation and preservation of elemental sulfur biominerals produced by sulfur-oxidizing bacteria. We characterized elemental sulfur particles produced within a Sulfurovum-rich biofilm in the Frasassi Cave System (Italy). The particles adopt spherical and bipyramidal morphologies, and display both stable (α-S8) and metastable (β-S8) crystal structures. Elemental sulfur is embedded within a dense matrix of EPS, and the particles are surrounded by organic envelopes rich in amide and carboxylic groups. Organic encapsulation and the presence of metastable crystal structures are consistent with elemental sulfur organomineralization, i.e., the formation and stabilization of elemental sulfur in the presence of organics, a mechanism that has previously been observed in laboratory studies. This research provides new evidence for the important role of microbial EPS in mineral formation in the environment. We hypothesize that the extracellular organics are used by sulfur-oxidizing bacteria for the stabilization of elemental sulfur minerals outside of the cell wall as a store of chemical energy. The stabilization of energy sources (in the form of a solid electron acceptor) in biofilms is a potential new role for microbial EPS that requires further investigation.


2016 ◽  
Vol 8 (1) ◽  
pp. 28-37 ◽  
Author(s):  
Caitlin Costello

Monoclonal antibodies (mAbs) have emerged as a promising new drug class for the treatment of multiple myeloma (MM). Daratumumab (DARA), a CD38 mAb, has demonstrated safety, tolerability and activity in a range of clinical trials, both as monotherapy and in combination strategies for MM. The favorable efficacy results in heavily pretreated patients with advanced MM have provided the rationale for the investigation of DARA in a number of ongoing and future phase II and III trials. The general tolerability of mAbs has allowed for widespread investigation and use of DARA among a variety of MM patients, however their use requires special consideration. Infusion-related reactions (IRRs), interference with blood compatibility assays and response assessments are all unique factors related to the use of DARA. This review provides an update of the results from the DARA clinical trials conducted to date, its future plans for investigation, and practical management considerations for the use of DARA in daily practice.


2020 ◽  
Vol 3 (1) ◽  
Author(s):  
Takayuki Tamaki ◽  
Satoyo Oya ◽  
Makiko Naito ◽  
Yasuko Ozawa ◽  
Tomoyuki Furuya ◽  
...  
Keyword(s):  

1998 ◽  
Vol 80 (11) ◽  
pp. 726-734 ◽  
Author(s):  
Tatiana Byzova ◽  
Ramin Rabbani ◽  
Stanley D’Souza ◽  
Edward Plow

IntroductionA defining characteristic of vascular cells is their adhesive status. The predominant cells of the blood vessel, endothelial cells (EC) and smooth muscle cells (SMC), are normally adherent but can be induced to migrate in response to vascular injury and angiogenic stimuli. The circulating blood cells are ordinarily nonadhesive but can rapidly acquire an adhesive phenotype in response to physiologic and pathophysiologic stimuli. As prime examples, platelets become adherent to the subendothelial matrix and to one another during thrombus formation, and leukocytes first adhere to EC and then transmigrate during the inflammatory response. At a molecular level, the adhesive properties of the vascular cells are determined by the adhesion receptors on their cell-surface and the functional state of these receptors. To match the variety of requisite cellular adhesive reactions, the repertoire of adhesion receptors expressed by vascular cells is broad. Multiple representatives of the immunoglobulin-like, the selectin, the cadherin and the integrin families of adhesion receptors are present on and have been implicated in the functions of the vascular cells. The importance of these adhesion receptors in vascular cell function is underscored by the severe pathogenetic consequences of their congenital deficiencies, such as in Glanzmann’s thrombasthenia, LAD (Leucocyte Adhesion deficiency) I and LAD II (1-3).The integrins are the largest and most broadly distributed of the families of cellular adhesion receptors. Of the integrins, αvβ3, originally identified as the vitronectin receptor, is particularly widely distributed. It is expressed at variable density on many types of vascular cells. Obviously, the adhesive properties of a cell are determined by its full repertoire of adhesion receptors. As an example, the adhesion of EC to fibrinogen/fibrin is mediated by no fewer than five receptors. Nevertheless, it is possible to dissect out the contributions of individual adhesion receptors, and αvβ3 has been implicated in many functional responses of vascular cells. This review focusses upon the role of αvβ3 in vascular cell biology. Other contributions of this multifunctional receptor, such as its role in neoplastic growth and invasion and in osteoclast-mediated bone resorption, are beyond the scope of this article and have been reviewed elsewhere (4, 5).


2020 ◽  
Vol 6 (1) ◽  
pp. 12 ◽  
Author(s):  
Mariangela Fedel

Carbon nanostructures (CNs), such as carbon nanotubes, fullerenes, carbon dots, nanodiamonds as well as graphene and its derivatives present a tremendous potential for various biomedical applications, ranging from sensing to drug delivery and gene therapy, biomedical imaging and tissue engineering. Since most of these applications encompass blood contact or intravenous injection, hemocompatibility is a critical aspect that must be carefully considered to take advantage of CN exceptional characteristics while allowing their safe use. This review discusses the hemocompatibility of different classes of CNs with the purpose of providing biomaterial scientists with a comprehensive vision of the interactions between CNs and blood components. The various complex mechanisms involved in blood compatibility, including coagulation, hemolysis, as well as the activation of complement, platelets, and leukocytes will be considered. Special attention will be paid to the role of CN size, structure, and surface properties in the formation of the protein corona and in the processes that drive blood response. The aim of this review is to emphasize the importance of hemocompatibility for CNs intended for biomedical applications and to provide some valuable insights for the development of new generation particles with improved performance and safety in the physiological environment.


Sign in / Sign up

Export Citation Format

Share Document