redox sensors
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 12)

H-INDEX

16
(FIVE YEARS 2)

2021 ◽  
Vol 165 ◽  
pp. 27
Author(s):  
Martín Hugo ◽  
Carmen Choya-Foces ◽  
Daniel Pastor-Flores ◽  
Antonio Martínez-Ruiz
Keyword(s):  

Author(s):  
Siew Ting Melissa Tan ◽  
Scott Keene ◽  
Alexander Giovannitti ◽  
Armantas Melianas ◽  
Maximilian Moser ◽  
...  

The ability to control the charge density of organic mixed ionic electronic conductors (OMIECs) via reactions with redox-active analytes has enabled applications as electrochemical redox sensors. Their charge density-dependent conductivity...


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Oksana Breus ◽  
Thomas Dickmeis

AbstractImportant roles for reactive oxygen species (ROS) and redox signaling in embryonic development and regenerative processes are increasingly recognized. However, it is difficult to obtain information on spatiotemporal dynamics of ROS production and signaling in vivo. The zebrafish is an excellent model for in vivo bioimaging and possesses a remarkable regenerative capacity upon tissue injury. Here, we review data obtained in this model system with genetically encoded redox-sensors targeting H2O2 and glutathione redox potential. We describe how such observations have prompted insight into regulation and downstream effects of redox alterations during tissue differentiation, morphogenesis and regeneration. We also discuss the properties of the different sensors and their consequences for the interpretation of in vivo imaging results. Finally, we highlight open questions and additional research fields that may benefit from further application of such sensor systems in zebrafish models of development, regeneration and disease.


2020 ◽  
Vol 477 (19) ◽  
pp. 3709-3727
Author(s):  
Meiru Si ◽  
Can Chen ◽  
Chengchuan Che ◽  
Yang Liu ◽  
Xiaona Li ◽  
...  

Corynebacterium glutamicum, an important industrial and model microorganism, inevitably encountered stress environment during fermentative process. Therefore, the ability of C. glutamicum to withstand stress and maintain the cellular redox balance was vital for cell survival and enhancing fermentation efficiency. To robustly survive, C. glutamicum has been equipped with many types of redox sensors. Although cysteine oxidation-based peroxide-sensing regulators have been well described in C. glutamicum, redox sensors involving in multiple environmental stress response remained elusive. Here, we reported an organic peroxide- and antibiotic-sensing MarR (multiple antibiotics resistance regulators)-type regulator, called OasR (organic peroxide- and antibiotic-sensing regulator). The OasR regulator used Cys95 oxidation to sense oxidative stress to form S-mycothiolated monomer or inter-molecular disulfide-containing dimer, resulting in its dissociation from the target DNA promoter. Transcriptomics uncovered the strong up-regulation of many multidrug efflux pump genes and organic peroxide stress-involving genes in oasR mutant, consistent with the phenomenon that oasR mutant showed a reduction in sensitivity to antibiotic and organic peroxide. Importantly, the addition of stress-associated ligands such as cumene hydroperoxide and streptomycin induced oasR and multidrug efflux pump protein NCgl1020 expression in vivo. We speculated that cell resistance to antibiotics and organic peroxide correlated with stress response-induced up-regulation of genes expression. Together, the results revealed that OasR was a key MarR-type redox stress-responsive transcriptional repressor, and sensed oxidative stress generated through hydroxyl radical formation to mediate antibiotic resistance in C. glutamicum.


2020 ◽  
Author(s):  
Kelly M Balmant ◽  
Sheldon R Lawrence ◽  
Benjamin V Duong ◽  
Fanzhao Zhu ◽  
Ning Zhu ◽  
...  

ABSTRACTRedox-based post-translational modifications (PTMs) involving protein cysteine residues as redox sensors are important to various physiological processes. However, little is known about redox-sensitive proteins in guard cells and their functions in stomatal immunity. In this study, we applied an integrative protein labeling method cysTMTRAQ and identified guard cell proteins that were altered by thiol redox PTMs in response to a bacterial flagellin peptide flg22. In total, eight, seven and 20 potential redox-responsive proteins were identified in guard cells treated with flg22 for 15, 30 and 60 min, respectively. The proteins fall into several functional groups including photosynthesis, lipid binding, oxidation-reduction, and defense. Among the proteins, a lipid transfer protein (LTP)-II was confirmed to be redox-responsive and involved in plant resistance to Pseudomonas syringe pv. tomato DC3000. This study not only creates an inventory of potential redox-sensitive proteins in flg22 signal transduction in guard cells, but also highlights the relevance of the lipid transfer protein in plant defense against the bacterial pathogens.Sentence summaryThiol-redox proteomics identified potential redox sensors important in stomatal immunity, and a lipid transfer protein was characterized to function as a redox sensor in plant immune response.


Antioxidants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 129
Author(s):  
Yuta Hatori ◽  
Takanori Kubo ◽  
Yuichiro Sato ◽  
Sachiye Inouye ◽  
Reiko Akagi ◽  
...  

Glutathione is a small thiol-containing peptide that plays a central role in maintaining cellular redox homeostasis. Glutathione serves as a physiologic redox buffer by providing thiol electrons for catabolizing harmful oxidants and reversing oxidative effects on biomolecules. Recent evidence suggests that the balance of reduced and oxidized glutathione (GSH/GSSG) defines the redox states of Cys residues in proteins and fine-tunes their stabilities and functions. To elucidate the redox balance of cellular glutathione at subcellular resolution, a number of redox-sensitive green fluorescent protein (roGFP) variants have been developed. In this study, we constructed and functionally validated organelle- and cytoskeleton-targeted roGFP and elucidated the redox status of the cytosolic glutathione at a subcellular resolution. These new redox sensors firmly established a highly reduced redox equilibrium of cytosolic glutathione, wherein significant deviation was observed among cells. By targeting the sensor to the cytosolic and lumen sides of the Golgi membrane, we identified a prominent redox gradient across the biological membrane at the Golgi body. The results demonstrated that organelle- and cytoskeleton-targeted sensors enable the assessment of glutathione oxidation near the cytosolic surfaces of different organelle membranes.


2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Shanshan Liu ◽  
Shengmei Xu ◽  
Renrong Wei ◽  
Zhizhong Cui ◽  
Xiaoyun Wu ◽  
...  

Artemisitene (ATT) activates the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) by increasing its stabilization and reducing ubiquitination. The cysteine (Cys) residues of the cytosolic Nrf2 repressor Kelch-like ECH-associated protein-1 (Keap1) function as redox sensors and may be crucial in activating Nrf2. To determine whether ATT-induced Nrf2 activation is dependent on the modification of Keap1 and to elucidate the underlying mechanism, we transfected cell lines with six different Keap1 mutant constructs, each with a Cys (−77, −151, −257, −273, −288, and −297) to Ser substitution. Only the Cys151Ser mutant prevented ATT-mediated activation of Nrf2, indicating that the Cys151 residue of Keap1 likely interacts with ATT and is essential for Nrf2 stabilization and transcription of downstream genes. Our finding provides a pharmacological basis for using artemisitene against oxidative stress-related diseases.


2019 ◽  
Vol 128 ◽  
pp. 23-31 ◽  
Author(s):  
Edyta Matysiak-Brynda ◽  
Jakub P. Sęk ◽  
Artur Kasprzak ◽  
Agata Królikowska ◽  
Mikolaj Donten ◽  
...  

Channels ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 477-482 ◽  
Author(s):  
Jie Yu ◽  
Junsheng Yang
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document