scholarly journals ON THE USE OF INSTANTANEOUS POWER FOR NEAR-FAULT RECORD MODIFICATION

2021 ◽  
Author(s):  
Esra Zengin ◽  
Norman Abrahamson
2020 ◽  
Vol 110 (6) ◽  
pp. 2828-2842
Author(s):  
Esra Zengin ◽  
Norman Abrahamson

ABSTRACT The velocity pulse in near-fault ground motions has been used as a key characteristic of damaging ground motions. Characterization of the velocity pulse involves three parameters: presence of the pulse, period of the pulse, and amplitude of the pulse. The basic concept behind the velocity pulse is that a large amount of seismic energy is packed into a short time, leading to larger demands on the structure. An intensity measure for near-fault ground motions, which is a direct measure of the amount of energy arriving in short time, called instantaneous power (IP (T1)), is defined as the maximum power of the bandpass-filtered velocity time series measured over a time interval of 0.5T1, in which T1 is the fundamental period of the structure. The records are bandpass filtered in the period band (0.2T1−3T1) to remove the frequencies that are not expected to excite the structure. Zengin and Abrahamson (2020) showed that the drift is better correlated with the IP (T1) than with the velocity pulse parameters for records scaled to the same spectral acceleration at T1. A conditional ground-motion model (GMM) for the IP is developed based on the 5%-damped spectral acceleration at T1, the earthquake magnitude, and the rupture distance. This conditional GMM can be used for record selection for near-fault ground motions that captures the key features of velocity pulses and can lead to a better representation of the median and variability of the maximum interstory drift. The conditional GMM can also be used in a vector hazard analysis for spectral acceleration (T1) and IP (T1) that can be used for more accurate estimation of drift hazard and seismic risk.


Author(s):  
Jim Cousins ◽  
Graeme H. McVerry

The Darfield earthquake of 3rd September 2010 UT and its aftershocks have yielded New Zealand’s richest set of strong-motion data since recording began in the early 1960s. Main-shock accelerograms were returned by 130 sites, ten of which had peak horizontal accelerations in the range 0.3 to 0.82g. One near-fault record, from Greendale, had a peak vertical acceleration of 1.26g. Eighteen records showed peak ground velocities exceeding 0.5 m/s, with three of them exceeding 1 m/s. The records included some with strong long-period directivity pulses, some with other long-period components that were related to a mixture of source and site effects, and some that exhibited the effects of liquefaction at their sites. There were marked differences between records on the deep alluvium of Christchurch City and the Canterbury Plains, and those on shallow stiff soil sites. The strong-motion records provide the opportunity to assess the effects of the earthquake in terms of the ground motions and their relationship to design motions. They also provide an invaluable set of near-source motions for seismological studies. Our report presents an overview of the records and some preliminary findings derived from them.


2021 ◽  
pp. 875529302110145
Author(s):  
Esra Zengin ◽  
Norman A Abrahamson

Selection of ground motions for use in nonlinear dynamic analysis is one of the most critical steps for both code-based design and probabilistic seismic risk assessment of structures. In practice, time-domain spectrum-matching methods, which add wavelet functions to an initial acceleration time series, have been widely used to obtain a record whose response spectrum closely matches the desired target spectrum. Although the spectral shape is known to be a good predictor of structural response, it does not represent the critical aspects of the velocity pulses, such as pulse amplitude and pulse period for near-fault ground motions. The Instantaneous Power ( IP( T1)), defined as the maximum rate of change of energy of the bandpass-filtered velocity time series over a short time interval given by half of the structural period, has been shown to be an effective alternative parameter to capture effects of the presence of a velocity pulse and the pulse period in near-fault record selection. We introduce an approach to modify time series so as to simultaneously match a target response spectrum and IP spectrum over a specified period interval. We demonstrate that the records modified using the proposed approach produce results comparable to those obtained using unscaled records, and prevent potential bias in structural response, relative to results when matching is performed without consideration of IP.


2019 ◽  
Vol 13 ◽  
Author(s):  
Yan Zhang ◽  
Ren Sheng

Background: In order to improve the efficiency of fault treatment of mining motor, the method of model construction is used to construct the type of kernel function based on the principle of vector machine classification and the optimization method of parameters. Methodology: One-to-many algorithm is used to establish two kinds of support vector machine models for fault diagnosis of motor rotor of crusher. One of them is to obtain the optimal parameters C and g based on the input samples of the instantaneous power fault characteristic data of some motor rotors which have not been processed by rough sets. Patents on machine learning have also shows their practical usefulness in the selction of the feature for fault detection. Results: The results show that the instantaneous power fault feature extracted from the rotor of the crusher motor is obtained by the cross validation method of grid search k-weights (where k is 3) and the final data of the applied Gauss radial basis penalty parameter C and the nuclear parameter g are obtained. Conclusion: The model established by the optimal parameters is used to classify and diagnose the sample of instantaneous power fault characteristic measurement of motor rotor. Therefore, the classification accuracy of the sample data processed by rough set is higher.


2017 ◽  
Author(s):  
Sarah A. Harbert ◽  
◽  
Alison R. Duvall ◽  
Gregory E. Tucker

2006 ◽  
Vol 22 (2) ◽  
pp. 367-390 ◽  
Author(s):  
Erol Kalkan ◽  
Sashi K. Kunnath

This paper investigates the consequences of well-known characteristics of near-fault ground motions on the seismic response of steel moment frames. Additionally, idealized pulses are utilized in a separate study to gain further insight into the effects of high-amplitude pulses on structural demands. Simple input pulses were also synthesized to simulate artificial fling-step effects in ground motions originally having forward directivity. Findings from the study reveal that median maximum demands and the dispersion in the peak values were higher for near-fault records than far-fault motions. The arrival of the velocity pulse in a near-fault record causes the structure to dissipate considerable input energy in relatively few plastic cycles, whereas cumulative effects from increased cyclic demands are more pronounced in far-fault records. For pulse-type input, the maximum demand is a function of the ratio of the pulse period to the fundamental period of the structure. Records with fling effects were found to excite systems primarily in their fundamental mode while waveforms with forward directivity in the absence of fling caused higher modes to be activated. It is concluded that the acceleration and velocity spectra, when examined collectively, can be utilized to reasonably assess the damage potential of near-fault records.


2021 ◽  
Author(s):  
Deniz Ertuncay ◽  
Giovanni Costa

AbstractNear-fault ground motions may contain impulse behavior on velocity records. To calculate the probability of occurrence of the impulsive signals, a large dataset is collected from various national data providers and strong motion databases. The dataset has a large number of parameters which carry information on the earthquake physics, ruptured faults, ground motion parameters, distance between the station and several parts of the ruptured fault. Relation between the parameters and impulsive signals is calculated. It is found that fault type, moment magnitude, distance and azimuth between a site of interest and the surface projection of the ruptured fault are correlated with the impulsiveness of the signals. Separate models are created for strike-slip faults and non-strike-slip faults by using multivariate naïve Bayes classifier method. Naïve Bayes classifier allows us to have the probability of observing impulsive signals. The models have comparable accuracy rates, and they are more consistent on different fault types with respect to previous studies.


Structures ◽  
2021 ◽  
Vol 30 ◽  
pp. 803-817
Author(s):  
Sayed Mahmoud ◽  
Ali Alqarni ◽  
Joseph Saliba ◽  
Amal H. Ibrahim ◽  
Magdy genidy ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 704
Author(s):  
Wenjun An ◽  
Guquan Song ◽  
Shutong Chen

Given the influence of near-fault vertical seismic action, we established a girder-spring-damping-rod model of a double-span continuous girder bridge and used the transient wave function expansion method and indirect modal function method to calculate the seismic response of the bridge. We deduced the theoretical solution for the vertical and longitudinal contact force and displacement response of the bridge structure under the action of the near-fault vertical seismic excitation, and we analyzed the influence of the vertical separation of the bridge on the bending failure of the pier. Our results show that under the action of a near-fault vertical earthquake, pier-girder separation will significantly alter the bridge’s longitudinal displacement response, and that neglecting this separation may lead to the underestimation of the pier’s bending damage. Calculations of the bending moment at the bottom of the pier under different pier heights and cross-sectional diameters showed that the separation of the pier and the girder increases the bending moment at the pier’s base. Therefore, the reasonable design of the pier size and tensile support bearing in near-fault areas may help to reduce longitudinal damage to bridges.


Sign in / Sign up

Export Citation Format

Share Document