Holocene earthquake history and slip rate of the southern Teton fault, Wyoming, USA

2019 ◽  
Vol 132 (7-8) ◽  
pp. 1566-1586 ◽  
Author(s):  
Christopher B. DuRoss ◽  
Ryan D. Gold ◽  
Richard W. Briggs ◽  
Jaime E. Delano ◽  
Dean A. Ostenaa ◽  
...  

Abstract The 72-km-long Teton normal fault bounds the eastern base of the Teton Range in northwestern Wyoming, USA. Although geomorphic surfaces along the fault record latest Pleistocene to Holocene fault movement, the postglacial earthquake history of the fault has remained enigmatic. We excavated a paleoseismic trench at the Buffalo Bowl site along the southernmost part of the fault to determine its Holocene rupture history and slip rate. At the site, ∼6.3 m of displacement postdates an early Holocene (ca. 10.5 ka) alluvial-fan surface. We document evidence of three surface-faulting earthquakes based on packages of scarp-derived colluvium that postdate the alluvial-fan units. Bayesian modeling of radiocarbon and luminescence ages yields earthquake times of ca. 9.9 ka, ca. 7.1 ka, and ca. 4.6 ka, forming the longest, most complete paleoseismic record of the Teton fault. We integrate these data with a displaced deglacial surface 4 km NE at Granite Canyon to calculate a postglacial to mid-Holocene (14.4–4.6 ka) slip rate of ∼1.1 mm/yr. Our analysis also suggests that the postglacial to early Holocene (14.4–9.9 ka) slip rate exceeds the Holocene (9.9–4.6 ka) rate by a factor of ∼2 (maximum of 3); however, a uniform rate for the fault is possible considering the 95% slip-rate errors. The ∼5 k.y. elapsed time since the last rupture of the southernmost Teton fault implies a current slip deficit of ∼4–5 m, which is possibly explained by spatially/temporally incomplete paleoseismic data, irregular earthquake recurrence, and/or variable per-event displacement. Our study emphasizes the importance of minimizing slip-rate uncertainties by integrating paleoseismic and geomorphic data sets and capturing multiple earthquake cycles.

Author(s):  
Reinhard Wolff ◽  
Ralf Hetzel ◽  
István Dunkl ◽  
Aneta A. Anczkiewicz

AbstractThe Brenner normal fault bounds the Tauern Window to the west and accommodated a significant portion of the orogen-parallel extension in the Eastern Alps. Here, we use zircon (U–Th)/He, apatite fission track, and apatite (U–Th)/He dating, thermokinematic modeling, and a topographic analysis to constrain the exhumation history of the western Tauern Window in the footwall of the Brenner fault. ZHe ages from an E–W profile (parallel to the slip direction of the fault) decrease westwards from ~ 11 to ~ 8 Ma and suggest a fault-slip rate of 3.9 ± 0.9 km/Myr, whereas AFT and AHe ages show no spatial trends. ZHe and AFT ages from an elevation profile indicate apparent exhumation rates of 1.1 ± 0.7 and 1.0 ± 1.3 km/Myr, respectively, whereas the AHe ages are again spatially invariant. Most of the thermochronological ages are well predicted by a thermokinematic model with a normal fault that slips at a rate of 4.2 km/Myr between ~ 19 and ~ 9 Ma and produces 35 ± 10 km of extension. The modeling reveals that the spatially invariant AHe ages are caused by heat advection due to faulting and posttectonic thermal relaxation. The enigmatic increase of K–Ar phengite and biotite ages towards the Brenner fault is caused by heat conduction from the hot footwall to the cooler hanging wall. Topographic profiles across an N–S valley in the fault footwall indicate 1000 ± 300 m of erosion after faulting ceased, which agrees with the results of our thermokinematic model. Valley incision explains why the Brenner fault is located on the western valley shoulder and not at the valley bottom. We conclude that the ability of thermokinematic models to quantify heat transfer by rock advection and conduction is crucial for interpreting cooling ages from extensional fault systems.


1994 ◽  
Vol 34 (1) ◽  
pp. 529 ◽  
Author(s):  
G.W. O'Brien ◽  
C.V. Reeves ◽  
P.R. Milligan ◽  
M.P. Morse ◽  
E.M. Alexander ◽  
...  

The integration of high resolution, image-processed aeromagnetic data with regional geological, magnetic, gravity and seismic data-sets has provided new insights into the structural architecture, rifting history, and petroleum potential of the western onshore and offshore Otway Basin, south-eastern Australia.Three principal structural directions are evident from the magnetic data: NS, NE-ENE and NW-WNW. The structural fabric and regional geological data suggest that the rifting history of the basin may have taken place in two distinct stages, rather than within a simple rift-to-drift framework. The initial stage, from 150 to ~120 Ma, took place within a stress regime dominated by NW-SE extensional transport, similar to that of the basins within the Great Australian Bight to the west. ENE-striking extensional rift segments, such as the Crayfish Platform-Robe Trough and the Torquay Sub-Basin, developed during this period, contemporaneous with the deposition of thick sediments of the Early Cretaceous (Tithonian-Hauterivian) Crayfish Subgroup. In other parts of the basin, NW-striking rift segments, such as the Penola, and perhaps Ardonachie, Troughs onshore, developed within a strongly trans-tensional (left-lateral strike-slip) environment. At ~120 Ma, the regional stress field changed, and the Crayfish Subgroup-aged rift segments were reactivated, with uplift and block faulting extending through to perhaps 117 Ma. Rifting then recommenced at about 117 Ma (contemporaneous with the deposition of the Barremian-Albian Eumeralla Formation), though the extensional transport direction was now oriented NNE-SSW, almost perpendicular to that of the earlier Crayfish Subgroup rift stage. This later rift episode ultimately led to continental breakup at ~96 Ma and produced the 'traditional' normal fault orientations (NW-SE to WNW-ESE) throughout the Otway Basin.


2019 ◽  
Vol 110 (1) ◽  
pp. 67-82 ◽  
Author(s):  
Mark S. Zellman ◽  
Christopher B. DuRoss ◽  
Glenn D. Thackray ◽  
Stephen F. Personius ◽  
Nadine G. Reitman ◽  
...  

ABSTRACT Prominent scarps on Pinedale glacial surfaces along the eastern base of the Teton Range confirm latest Pleistocene to Holocene surface-faulting earthquakes on the Teton fault, but the timing of these events is only broadly constrained by a single previous paleoseismic study. We excavated two trenches at the Leigh Lake site near the center of the Teton fault to address open questions about earthquake timing and rupture length. Structural and stratigraphic evidence indicates two surface-faulting earthquakes at the site that postdate deglacial sediments dated by radiocarbon and optically stimulated luminescence to ∼10–11  ka. Earthquake LL2 occurred at ∼10.0  ka (9.7–10.4 ka; 95% confidence range) and LL1 at ∼5.9  ka (4.8–7.1 ka; 95%). LL2 predates an earthquake at ∼8  ka identified in the previous paleoseismic investigation at Granite Canyon. LL1 corresponds to the most recent Granite Canyon earthquake at ∼4.7–7.9  ka (95% confidence range). Our results are consistent with the previously documented long-elapsed time since the most recent Teton fault rupture and expand the fault’s earthquake history into the early Holocene.


Author(s):  
Christopher B. DuRoss ◽  
Mark S. Zellman ◽  
Glenn D. Thackray ◽  
Richard W. Briggs ◽  
Ryan D. Gold ◽  
...  

ABSTRACT The 72-km-long Teton fault in northwestern Wyoming is an ideal candidate for reconstructing the lateral extent of surface-rupturing earthquakes and testing models of normal-fault segmentation. To explore the history of earthquakes on the northern Teton fault, we hand-excavated two trenches at the Steamboat Mountain site, where the east-dipping Teton fault has vertically displaced west-sloping alluvial-fan surfaces. The trenches exposed glaciofluvial, alluvial-fan, and scarp-derived colluvial sediments and stratigraphic and structural evidence of two surface-rupturing earthquakes (SM1 and SM2). A Bayesian geochronologic model for the site includes three optically stimulated luminescence ages (∼12–17  ka) for the glaciofluvial units and 16 radiocarbon ages (∼1.2–8.6  ka) for the alluvial-fan and colluvial units and constrains SM1 and SM2 to 5.5±0.2  ka, 1σ (5.2–5.9 ka, 95%) and 9.7±0.9  ka, 1σ (8.5–11.5 ka, 95%), respectively. Structural, stratigraphic, and geomorphic relations yield vertical displacements for SM1 (2.0±0.6  m, 1σ) and SM2 (2.0±1.0  m, 1σ). The Steamboat Mountain paleoseismic chronology overlaps temporally with earthquakes interpreted from previous terrestrial and lacustrine paleoseismic data along the fault. Integrating these data, we infer that the youngest Teton fault rupture occurred at ∼5.3  ka, generated 1.7±1.0  m, 1σ of vertical displacement along 51–70 km of the fault, and had a moment magnitude (Mw) of ∼7.0–7.2. This rupture was apparently unimpeded by structural complexities along the Teton fault. The integrated chronology permits a previous full-length rupture at ∼10  ka and possible partial ruptures of the fault at ∼8–9  ka. To reconcile conflicting terrestrial and lacustrine paleoseismic data, we propose a hypothesis of alternating full- and partial-length ruptures of the Teton fault, including Mw∼6.5–7.2 earthquakes every ∼1.2  ky. Additional paleoseismic data for the northern and central sections of the fault would serve to test this bimodal rupture hypothesis.


Author(s):  
Fabian Kirsten ◽  
Alexander Fülling ◽  
Susann Heinrich ◽  
Birgit Schneider ◽  
Jürgen Heinrich

AbstractThe soilscapes along the southern and western coast of Crete (Greece) are dominated by coarse-grained reddish-brown slope sediments whose natural (pre-anthropogenic) configuration and properties are difficult to reconstruct due to the long history of intense land use. As a consequence, datable terrestrial sediment archives of pre-anthropogenic genesis are scarce. We present preliminary results of a study performed on an accumulation within an alluvial fan south of Stomio Bay in southwestern Crete. The studied profile is located in a small depression and is composed of a sequence of sandy to silty yellowish-brown calcareous sediments overlying coarse-grained slope sediments, including a fossil topsoil horizon. Based on macroscopic, micromorphological, geochemical, geophysical and mineralogical analysis, we interpret the fine-grained sediments to have a local aeolian origin. OSL dating indicates a final deposition phase during the early Holocene. Considering the scarcity of early Holocene terrestrial archives in Crete, the analysed profile provides valuable data for the reconstruction of landscape dynamics and paleoecological conditions as well as soil-sediment configurations during this time period. Additional research is needed to address the specific source area(s) as well as the ages of the deposition of slope sediments and formation of the fossil topsoil.


Author(s):  
B. M. Minchew ◽  
C. R. Meyer

Glacier surges are quasi-periodic episodes of rapid ice flow that arise from increases in slip rate at the ice–bed interface. The mechanisms that trigger and sustain surges are not well understood. Here, we develop a new model of incipient surge motion for glaciers underlain by sediments to explore how surges may arise from slip instabilities within a thin layer of saturated, deforming subglacial till. Our model represents the evolution of internal friction, porosity and pore water pressure within the till as functions of the rate and history of shear deformation, and couples the till mechanics to a simple ice-flow model. Changes in pore water pressure govern incipient surge motion, with less permeable till facilitating surging because dilation-driven reductions in pore water pressure slow the rate at which till tends towards a new steady state, thereby allowing time for the glacier to thin dynamically. The reduction of overburden (and thus effective) pressure at the bed caused by dynamic thinning of the glacier sustains surge acceleration in our model. The need for changes in both the hydromechanical properties of the till and the thickness of the glacier creates restrictive conditions for surge motion that are consistent with the rarity of surge-type glaciers and their geographical clustering.


Terra Nova ◽  
2021 ◽  
Author(s):  
Santantonio Massimo ◽  
Cipriani Angelo ◽  
Fabbi Simone ◽  
Meister Christian

2021 ◽  
Author(s):  
Martin H. Trauth ◽  
Asfawossen Asrat ◽  
Nadine Berner ◽  
Faysal Bibi ◽  
Verena Foerster ◽  
...  

<p>The hypothesis of a connection between the onset (or intensification) of Northern Hemisphere Glaciation (NHG), the stepwise increase in African aridity (and climate variability) and an important mammalian (including hominin) species turnover is a textbook example of the initiation of a scientific idea and its propagation in science. It is, however, also an example of the persistent popularity of a hypothesis despite mounting evidence against it. The first part of our work analyzes of the history of the scientific idea by seeking its roots, including coincidental meetings and exchanges between of scientists, at project meetings, conferences and workshops. The consequences of this idea are examined and its influence on subsequent scientific investigations both before and after it has been falsified. In the second part of our investigation, we examine why the idea that the high latitudes have a major control on the climate of the low latitudes and thus early human evolution persists. For this purpose, an attempt is made to understand the original interpretation of the data, with special consideration of the composition of the scientific team and their scientific backgrounds and persuasions. Some of the key records in support of the hypothesis of a step-wise transition will be statistically re-analyzed by fitting change-point models to the time series to determine the midpoint and duration of the transition – in case such a transition is found in the data. A critical review of key publications in support of such a connection and a statistical re-analysis of key data sets leads to three conclusions: (1) Northern Hemisphere Glaciation is a gradual process between ~3.5–2.5 Ma, not an abrupt onset, either at ~2.5 Ma, nor at ~2.8 Ma, or any other time in the Late Cenozoic Era, (2) the trend towards greater aridity in Africa during this period was also gradual, not stepwise in the sense of a consistent transition of a duration of ≤0.2 Ma, and (3) accordingly, a step-wise change in environmental conditions cannot be used to explain an important mammalian (including hominin) species turnover.</p>


Sign in / Sign up

Export Citation Format

Share Document