reynolds stress transport model
Recently Published Documents


TOTAL DOCUMENTS

20
(FIVE YEARS 0)

H-INDEX

5
(FIVE YEARS 0)

Author(s):  
Behtash Tavakoli ◽  
Goodarz Ahmadi

Simulations of flow field around wall mounted square cylinders have been used extensively for validation of computational models in the literature. In this paper the airflow fields around a square cylinder were simulated using the Reynolds Averaged Navier-Stokes (RANS) models as well as the Large Eddy Simulations (LES). Particular attention was given to the case with Reynolds number of 80,000 for which the experimental data of Hussein and Matinuzzi [1] are available. The nature of the 3D wakes behind the cube as well as the vortices in front and at the back of the cube were investigated. The simulation results were compared with the experimental data and the accuracy of different models were studied. While the LES better captured the features of this separated flow, it is computationally intensive. The Reynolds Stress Transport Model (RSTM) did not properly predict some features of this separated flow, but is comparatively more economical. The accuracy of RSTM for predicting the turbulence features of separated flows was discussed, and its application for the flow around a realistic model of a building was pointed out.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Pavel E. Smirnov ◽  
Florian R. Menter

A rotation-curvature correction suggested earlier by Spalart and Shur (1997, “On the Sensitization of Turbulence Models to Rotation and Curvature,” Aerosp. Sci. Technol., 1(5), pp. 297–302) for the one-equation Spalart–Allmaras turbulence model is adapted to the shear stress transport model. This new version of the model (SST-CC) has been extensively tested on a wide range of both wall-bounded and free shear turbulent flows with system rotation and/or streamline curvature. Predictions of the SST-CC model are compared with available experimental and direct numerical simulations (DNS) data, on the one hand, and with the corresponding results of the original SST model and advanced Reynolds stress transport model (RSM), on the other hand. It is found that in terms of accuracy the proposed model significantly improves the original SST model and is quite competitive with the RSM, whereas its computational cost is significantly less than that of the RSM.


2009 ◽  
Vol 2009 ◽  
pp. 1-14 ◽  
Author(s):  
S. Mimouni ◽  
F. Archambeau ◽  
M. Boucker ◽  
J. Laviéville ◽  
C. Morel

In our work in 2008, we evaluated the aptitude of the code Neptune_CFD to reproduce the incidence of a structure topped by vanes on a boiling layer, within the framework of the Neptune project. The objective was to reproduce the main effects of the spacer grids. The turbulence of the liquid phase was modeled by a first-orderK-εmodel. We show in this paper that this model is unable to describe the turbulence of rotating flows, in accordance with the theory. The objective of this paper is to improve the turbulence modeling of the liquid phase by a second turbulence model based on aRij-εapproach. Results obtained on typical single-phase cases highlight the improvement of the prediction for all computed values. We tested the turbulence modelRij-εimplemented in the code versus typical adiabatic two-phase flow experiments. We check that the simulations with the Reynolds stress transport model (RSTM) give satisfactory results in a simple geometry as compared to aK-εmodel: this point is crucial before calculating rod bundle geometries where theK-εmodel may fail.


2009 ◽  
Author(s):  
Behtash Tavakoli ◽  
Goodarz Ahmadi ◽  
Doug Bohl ◽  
Joshua Kehs

A computer model for analyzing the airflow and particle transport and deposition around the Center of Excellence (CoE) Building in Syracuse was developed. The k-ε and the k-ω turbulence models in addition to the Reynolds stress transport model was used in the analysis. The airflow fields for the wind tunnel scale model of the building were simulated for different wind speeds and various directions including north to south and west to east. The computer pressure and velocity fields were compared with the corresponding experimental data obtained by Particle Image Velocimetry (PIV) and good agreement was found. Applications of the computational model for predicting particulate pollutant dispersion and deposition near the CoE building were discussed.


Author(s):  
M. Sharabi ◽  
W. Ambrosini ◽  
N. Forgione ◽  
S. He

The present paper describes the results of the application of the FLUENT code in the analysis of rod bundle configurations proposed for high pressure supercritical water reactors. The model considers a 1/8 slice of a rod bundle. The details from CFD calculations offer predictions of the circumferential clad surface temperature and of the effect of axial power distribution on the mass exchange between subchannels and on the maximum surface rod temperature. Geometry and boundary conditions are adopted from a previous work that made use of subchannel programs, allowing for a direct comparison between the two techniques. Both the standard k-ε model and the Reynolds stress transport model are used. Conclusions are drawn about the present capabilities in predicting heat transfer behavior in fuel rod bundles proposed for supercritical water reactors.


2006 ◽  
Vol 129 (4) ◽  
pp. 434-440 ◽  
Author(s):  
Rongguang Jia ◽  
Bengt Sundén ◽  
Mohammad Faghri

A new Reynolds stress transport model (RSTM) aimed for engineering applications is proposed with consideration of near-wall turbulence. This model employs the Speziale, Sarkar, and Gatski (SSG) pressure strain term, the ω equation, and the shear stress transport (SST) model for the shear stresses at the near-wall region (say, y+<30). The models are selected based on the following merits: The SSG RSTM model performs well in the fully turbulent region and does not need the wall normal vectors; the ω equation can be integrated down to the wall without damping functions. The SST model is a proper two-equation model that performs well for flows with adverse pressure gradient, while most two-equation models can have a good prediction of the shear stresses. A function is selected for the blending of the RSTM and SST. Three cases are presented to show the performance of the present model: (i) fully developed channel flow with Reτ=395, (ii) backward-facing step with an expansion ratio of 1.2 and Re=5200 base on the step height, and (iii) circular impingement with the nozzle-to-wall distance H=4D and Re=20,000. It is believed that the new model has good applicability for complex flow fields.


Sign in / Sign up

Export Citation Format

Share Document