food odors
Recently Published Documents


TOTAL DOCUMENTS

92
(FIVE YEARS 29)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Lorena Halty-deLeon ◽  
Venkatesh Pal Mahadevan ◽  
Bill S. Hansson ◽  
Dieter Wicher

AbstractIn insect olfaction, sensitization refers to the amplification of a weak olfactory signal when the stimulus is repeated within a specific time window. In the vinegar fly, Drosophila melanogaster, his occurs already at the periphery, at the level of olfactory sensory neurons (OSNs) located in the antenna. In our study, we investigate whether sensitization is a widespread property in a set of seven types of OSNs, as well as the mechanisms involved. First, we characterize and compare differences in spontaneous activity, response velocity and response dynamics among the selected OSN types. These express different receptors with distinct tuning properties and behavioral relevance. Second, we show that sensitization is not a general property. Among our selected OSNs types, it occurs in those responding to more general food odors, while OSNs involved in very specific detection of highly specific ecological cues like pheromones and warning signals show no sensitization. Moreover, we show that mitochondria play an active role in sensitization by contributing to the increase in intracellular Ca2+ upon weak receptor activation. Thus, by using a combination of single sensillum recordings (SSR), calcium imaging and pharmacology, we widen the understanding of how the olfactory signal is processed at the periphery.Abstract Figure


Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1043
Author(s):  
Juliette Ravaux ◽  
Julia Machon ◽  
Bruce Shillito ◽  
Dominique Barthélémy ◽  
Louis Amand ◽  
...  

Deep-sea species endemic to hydrothermal vents face the critical challenge of detecting active sites in a vast environment devoid of sunlight. This certainly requires specific sensory abilities, among which olfaction could be a relevant sensory modality, since chemical compounds in hydrothermal fluids or food odors could potentially serve as orientation cues. The temperature of the vent fluid might also be used for locating vent sites. The objective of this study is to observe the following key behaviors of olfaction in hydrothermal shrimp, which could provide an insight into their olfactory capacities: (1) grooming behavior; (2) attraction to environmental cues (food odors and fluid markers). We designed experiments at both deep-sea and atmospheric pressure to assess the behavior of the vent shrimp Rimicaris exoculata and Mirocaris fortunata, as well as of the coastal species Palaemon elegans and Palaemon serratus for comparison. Here, we show that hydrothermal shrimp groom their sensory appendages similarly to other crustaceans, but this does not clean the dense bacterial biofilm that covers the olfactory structures. These shrimp have previously been shown to possess functional sensory structures, and to detect the environmental olfactory signals tested, but we do not observe significant attraction behavior here. Only temperature, as a signature of vent fluids, clearly attracts vent shrimp and thus is confirmed to be a relevant signal for orientation in their environment.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Ni Ji ◽  
Gurrein K Madan ◽  
Guadalupe I Fabre ◽  
Alyssa Dayan ◽  
Casey M Baker ◽  
...  

To adapt to their environments, animals must generate behaviors that are closely aligned to a rapidly changing sensory world. However, behavioral states such as foraging or courtship typically persist over long time scales to ensure proper execution. It remains unclear how neural circuits generate persistent behavioral states while maintaining the flexibility to select among alternative states when the sensory context changes. Here, we elucidate the functional architecture of a neural circuit controlling the choice between roaming and dwelling states, which underlie exploration and exploitation during foraging in C. elegans. By imaging ensemble-level neural activity in freely-moving animals, we identify stereotyped changes in circuit activity corresponding to each behavioral state. Combining circuit-wide imaging with genetic analysis, we find that mutual inhibition between two antagonistic neuromodulatory systems underlies the persistence and mutual exclusivity of the neural activity patterns observed in each state. Through machine learning analysis and circuit perturbations, we identify a sensory processing neuron that can transmit information about food odors to both the roaming and dwelling circuits and bias the animal towards different states in different sensory contexts, giving rise to context-appropriate state transitions. Our findings reveal a potentially general circuit architecture that enables flexible, sensory-driven control of persistent behavioral states.


Appetite ◽  
2021 ◽  
pp. 105774
Author(s):  
Maria Poessel ◽  
Filip Morys ◽  
Nora Breuer ◽  
Arno Villringer ◽  
Thomas Hummel ◽  
...  

PLoS Biology ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. e3001374 ◽  
Author(s):  
Laura K. Shanahan ◽  
Surabhi Bhutani ◽  
Thorsten Kahnt

Growing evidence suggests that internal factors influence how we perceive the world. However, it remains unclear whether and how motivational states, such as hunger and satiety, regulate perceptual decision-making in the olfactory domain. Here, we developed a novel behavioral task involving mixtures of food and nonfood odors (i.e., cinnamon bun and cedar; pizza and pine) to assess olfactory perceptual decision-making in humans. Participants completed the task before and after eating a meal that matched one of the food odors, allowing us to compare perception of meal-matched and non-matched odors across fasted and sated states. We found that participants were less likely to perceive meal-matched, but not non-matched, odors as food dominant in the sated state. Moreover, functional magnetic resonance imaging (fMRI) data revealed neural changes that paralleled these behavioral effects. Namely, odor-evoked fMRI responses in olfactory/limbic brain regions were altered after the meal, such that neural patterns for meal-matched odor pairs were less discriminable and less food-like than their non-matched counterparts. Our findings demonstrate that olfactory perceptual decision-making is biased by motivational state in an odor-specific manner and highlight a potential brain mechanism underlying this adaptive behavior.


Insects ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 724
Author(s):  
Ayako Wada-Katsumata ◽  
Coby Schal

An association of food sources with odors prominently guides foraging behavior in animals. To understand the interaction of olfactory memory and food preferences, we used glucose-averse (GA) German cockroaches. Multiple populations of cockroaches evolved a gustatory polymorphism where glucose is perceived as a deterrent and enables GA cockroaches to avoid eating glucose-containing toxic baits. Comparative behavioral analysis using an operant conditioning paradigm revealed that learning and memory guide foraging decisions. Cockroaches learned to associate specific food odors with fructose (phagostimulant, reward) within only a 1 h conditioning session, and with caffeine (deterrent, punishment) after only three 1 h conditioning sessions. Glucose acted as reward in wild type (WT) cockroaches, but GA cockroaches learned to avoid an innately attractive odor that was associated with glucose. Olfactory memory was retained for at least 3 days after three 1 h conditioning sessions. Our results reveal that specific tastants can serve as potent reward or punishment in olfactory associative learning, which reinforces gustatory food preferences. Olfactory learning, therefore, reinforces behavioral resistance of GA cockroaches to sugar-containing toxic baits. Cockroaches may also generalize their olfactory learning to baits that contain the same or similar attractive odors even if they do not contain glucose.


Author(s):  
Eva Honnens de Lichtenberg Broge ◽  
Karin Wendin ◽  
Grethe Hyldig ◽  
Wender L. P. Bredie

Author(s):  
Ayako Wada-Katsumata ◽  
Coby Schal

An association of food sources with odors prominently guides foraging behavior in animals. To understand the interaction of olfactory memory and food preferences, we used glucose-averse (GA) German cockroaches. Multiple populations of cockroaches evolved a gustatory polymorphism where glucose is perceived as a deterrent and enables GA cockroaches to avoid eating glucose-containing toxic baits. Comparative behavioral analysis using an operant conditioning paradigm revealed that learning and memory guide foraging decisions. Cockroaches learned to associate specific food odors with fructose (phagostimulant, reward) within only a 1 hr conditioning session, and with caffeine (deterrent, punishment) after only three 1 hr conditioning sessions. Glucose acted as reward in wild type (WT) cockroaches, but GA cockroaches learned to avoid an innately attractive odor that was associated with glucose. Olfactory memory was retained for at least 3 days after three 1 hr conditioning sessions. Our results reveal that specific tastants can serve as potent reward or punishment in olfactory associative learning, which reinforces gustatory food preferences. Olfactory learning therefore reinforces behavioral resistance of GA cockroaches to sugar-containing toxic baits. Cockroaches may also generalize their olfactory learning to baits that contain the same or similar attractive odors even if they do not contain glucose.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stephan Schadll ◽  
Rea Rodriguez-Raecke ◽  
Lennart Heim ◽  
Jessica Freiherr

Overweight and obesity are considered a huge problem in modern societies. Previous studies have shown that people who are regularly distracted by playing videogames or watching TV while eating are more likely to be overweight and that the number of people that are gaming worldwide is rising. Further, it has been established that both, watching TV or playing video games lead to an increased snack intake and a lower rating of perceived taste intensity. Since flavor perception is accomplished not only by the sense of taste but also the sense of smell, we investigated the influence of cognitive load created by playing a video game on odor intensity perception. The participants played a low or high difficulty version of Tetris while presented with odors of food and non-food items. A higher skin conductance response (SCR) along with a decrease in task performance verified that the higher difficulty level leads to a higher cognitive load. Our behavioral data indicates a significant decrease in intensity estimates of food odors and non-food odors during the high compared to low cognitive load condition. We conclude that odor intensity estimation is influenced by real-life cognitive tasks which might in turn lead to overeating while distracted.


Sign in / Sign up

Export Citation Format

Share Document