scholarly journals Detecting The Speaker Language Using CNN Deep Learning Algorithm

Author(s):  
Fawziya M. Rammo ◽  
Mohammed N. Al-Hamdani

Many languages identification (LID) systems rely on language models that use machine learning (ML) approaches, LID systems utilize rather long recording periods to achieve satisfactory accuracy. This study aims to extract enough information from short recording intervals in order to successfully classify the spoken languages under test. The classification process is based on frames of (2-18) seconds where most of the previous LID systems were based on much longer time frames (from 3 seconds to 2 minutes). This research defined and implemented many low-level features using MFCC (Mel-frequency cepstral coefficients), containing speech files in five languages (English. French, German, Italian, Spanish), from voxforge.org an open-source corpus that consists of user-submitted audio clips in various languages, is the source of data used in this paper. A CNN (convolutional Neural Networks) algorithm applied in this paper for classification and the result was perfect, binary language classification had an accuracy of 100%, and five languages classification with six languages had an accuracy of 99.8%.

Diagnostics ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1246
Author(s):  
Ning Hung ◽  
Andy Kuan-Yu Shih ◽  
Chihung Lin ◽  
Ming-Tse Kuo ◽  
Yih-Shiou Hwang ◽  
...  

In this study, we aimed to develop a deep learning model for identifying bacterial keratitis (BK) and fungal keratitis (FK) by using slit-lamp images. We retrospectively collected slit-lamp images of patients with culture-proven microbial keratitis between 1 January 2010 and 31 December 2019 from two medical centers in Taiwan. We constructed a deep learning algorithm consisting of a segmentation model for cropping cornea images and a classification model that applies different convolutional neural networks (CNNs) to differentiate between FK and BK. The CNNs included DenseNet121, DenseNet161, DenseNet169, DenseNet201, EfficientNetB3, InceptionV3, ResNet101, and ResNet50. The model performance was evaluated and presented as the area under the curve (AUC) of the receiver operating characteristic curves. A gradient-weighted class activation mapping technique was used to plot the heat map of the model. By using 1330 images from 580 patients, the deep learning algorithm achieved the highest average accuracy of 80.0%. Using different CNNs, the diagnostic accuracy for BK ranged from 79.6% to 95.9%, and that for FK ranged from 26.3% to 65.8%. The CNN of DenseNet161 showed the best model performance, with an AUC of 0.85 for both BK and FK. The heat maps revealed that the model was able to identify the corneal infiltrations. The model showed a better diagnostic accuracy than the previously reported diagnostic performance of both general ophthalmologists and corneal specialists.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Jian Li ◽  
Yongyan Zhao

As the national economy has entered a stage of rapid development, the national economy and social development have also ushered in the “14th Five-Year Plan,” and the country has also issued support policies to encourage and guide college students to start their own businesses. Therefore, the establishment of an innovation and entrepreneurship platform has a significant impact on China’s economy. This gives college students great support and help in starting a business. The theory of deep learning algorithms originated from the development of artificial neural networks and is another important field of machine learning. As the computing power of computers has been greatly improved, especially the computing power of GPU can quickly train deep neural networks, deep learning algorithms have become an important research direction. The deep learning algorithm is a nonlinear network structure and a standard modeling method in the field of machine learning. After modeling various templates, they can be identified and implemented. This article uses a combination of theoretical research and empirical research, based on the views and research content of some scholars in recent years, and introduces the basic framework and research content of this article. Then, deep learning algorithms are used to analyze the experimental data. Data analysis is performed, and relevant concepts of deep learning algorithms are combined. This article focuses on exploring the construction of an IAE (innovation and entrepreneurship) education platform and making full use of the role of deep learning algorithms to realize the construction of innovation and entrepreneurship platforms. Traditional methods need to extract features through manual design, then perform feature classification, and finally realize the function of recognition. The deep learning algorithm has strong data image processing capabilities and can quickly process large-scale data. Research data show that 49.5% of college students and 35.2% of undergraduates expressed their interest in entrepreneurship. Entrepreneurship is a good choice to relieve employment pressure.


2019 ◽  
Vol 11 (23) ◽  
pp. 2858 ◽  
Author(s):  
Tianyu Ci ◽  
Zhen Liu ◽  
Ying Wang

We propose a new convolutional neural networks method in combination with ordinal regression aiming at assessing the degree of building damage caused by earthquakes with aerial imagery. The ordinal regression model and a deep learning algorithm are incorporated to make full use of the information to improve the accuracy of the assessment. A new loss function was introduced in this paper to combine convolutional neural networks and ordinal regression. Assessing the level of damage to buildings can be considered as equivalent to predicting the ordered labels of buildings to be assessed. In the existing research, the problem has usually been simplified as a problem of pure classification to be further studied and discussed, which ignores the ordinal relationship between different levels of damage, resulting in a waste of information. Data accumulated throughout history are used to build network models for assessing the level of damage, and models for assessing levels of damage to buildings based on deep learning are described in detail, including model construction, implementation methods, and the selection of hyperparameters, and verification is conducted by experiments. When categorizing the damage to buildings into four types, we apply the method proposed in this paper to aerial images acquired from the 2014 Ludian earthquake and achieve an overall accuracy of 77.39%; when categorizing damage to buildings into two types, the overall accuracy of the model is 93.95%, exceeding such values in similar types of theories and methods.


2018 ◽  
Vol 7 (2.7) ◽  
pp. 614 ◽  
Author(s):  
M Manoj krishna ◽  
M Neelima ◽  
M Harshali ◽  
M Venu Gopala Rao

The image classification is a classical problem of image processing, computer vision and machine learning fields. In this paper we study the image classification using deep learning. We use AlexNet architecture with convolutional neural networks for this purpose. Four test images are selected from the ImageNet database for the classification purpose. We cropped the images for various portion areas and conducted experiments. The results show the effectiveness of deep learning based image classification using AlexNet.  


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lara Lloret Iglesias ◽  
Pablo Sanz Bellón ◽  
Amaia Pérez del Barrio ◽  
Pablo Menéndez Fernández-Miranda ◽  
David Rodríguez González ◽  
...  

AbstractDeep learning is nowadays at the forefront of artificial intelligence. More precisely, the use of convolutional neural networks has drastically improved the learning capabilities of computer vision applications, being able to directly consider raw data without any prior feature extraction. Advanced methods in the machine learning field, such as adaptive momentum algorithms or dropout regularization, have dramatically improved the convolutional neural networks predicting ability, outperforming that of conventional fully connected neural networks. This work summarizes, in an intended didactic way, the main aspects of these cutting-edge techniques from a medical imaging perspective.


2021 ◽  
Author(s):  
Ramy Abdallah ◽  
Clare E. Bond ◽  
Robert W.H. Butler

<p>Machine learning is being presented as a new solution for a wide range of geoscience problems. Primarily machine learning has been used for 3D seismic data processing, seismic facies analysis and well log data correlation. The rapid development in technology with open-source artificial intelligence libraries and the accessibility of affordable computer graphics processing units (GPU) makes the application of machine learning in geosciences increasingly tractable. However, the application of artificial intelligence in structural interpretation workflows of subsurface datasets is still ambiguous. This study aims to use machine learning techniques to classify images of folds and fold-thrust structures. Here we show that convolutional neural networks (CNNs) as supervised deep learning techniques provide excellent algorithms to discriminate between geological image datasets. Four different datasets of images have been used to train and test the machine learning models. These four datasets are a seismic character dataset with five classes (faults, folds, salt, flat layers and basement), folds types with three classes (buckle, chevron and conjugate), fault types with three classes (normal, reverse and thrust) and fold-thrust geometries with three classes (fault bend fold, fault propagation fold and detachment fold). These image datasets are used to investigate three machine learning models. One Feedforward linear neural network model and two convolutional neural networks models (Convolution 2d layer transforms sequential model and Residual block model (ResNet with 9, 34, and 50 layers)). Validation and testing datasets forms a critical part of testing the model’s performance accuracy. The ResNet model records the highest performance accuracy score, of the machine learning models tested. Our CNN image classification model analysis provides a framework for applying machine learning to increase structural interpretation efficiency, and shows that CNN classification models can be applied effectively to geoscience problems. The study provides a starting point to apply unsupervised machine learning approaches to sub-surface structural interpretation workflows.</p>


BMC Genomics ◽  
2019 ◽  
Vol 20 (S9) ◽  
Author(s):  
Yang-Ming Lin ◽  
Ching-Tai Chen ◽  
Jia-Ming Chang

Abstract Background Tandem mass spectrometry allows biologists to identify and quantify protein samples in the form of digested peptide sequences. When performing peptide identification, spectral library search is more sensitive than traditional database search but is limited to peptides that have been previously identified. An accurate tandem mass spectrum prediction tool is thus crucial in expanding the peptide space and increasing the coverage of spectral library search. Results We propose MS2CNN, a non-linear regression model based on deep convolutional neural networks, a deep learning algorithm. The features for our model are amino acid composition, predicted secondary structure, and physical-chemical features such as isoelectric point, aromaticity, helicity, hydrophobicity, and basicity. MS2CNN was trained with five-fold cross validation on a three-way data split on the large-scale human HCD MS2 dataset of Orbitrap LC-MS/MS downloaded from the National Institute of Standards and Technology. It was then evaluated on a publicly available independent test dataset of human HeLa cell lysate from LC-MS experiments. On average, our model shows better cosine similarity and Pearson correlation coefficient (0.690 and 0.632) than MS2PIP (0.647 and 0.601) and is comparable with pDeep (0.692 and 0.642). Notably, for the more complex MS2 spectra of 3+ peptides, MS2PIP is significantly better than both MS2PIP and pDeep. Conclusions We showed that MS2CNN outperforms MS2PIP for 2+ and 3+ peptides and pDeep for 3+ peptides. This implies that MS2CNN, the proposed convolutional neural network model, generates highly accurate MS2 spectra for LC-MS/MS experiments using Orbitrap machines, which can be of great help in protein and peptide identifications. The results suggest that incorporating more data for deep learning model may improve performance.


Sign in / Sign up

Export Citation Format

Share Document