data hoarding
Recently Published Documents


TOTAL DOCUMENTS

21
(FIVE YEARS 10)

H-INDEX

2
(FIVE YEARS 1)

2021 ◽  
pp. 1-6
Author(s):  
Fabrizio Gilardi ◽  
Lucien Baumgartner ◽  
Clau Dermont ◽  
Karsten Donnay ◽  
Theresa Gessler ◽  
...  

ABSTRACT The relationship between digital technology and politics is an important phenomenon that remains poorly understood due to several structural problems. A key issue is the lack of adequate research infrastructures or the lack of access. This article discusses the challenges many social scientists face and presents the infrastructure we built in Switzerland to overcome them, using COVID-19 as an example. We conclude by discussing seven lessons we learned: automatization is key; avoid data hoarding; outsource some parts of the infrastructure but not others; focus on substantive questions; share data in the context of collaborations; engage in targeted public outreach; and collaboration is more promising than competition. We hope that our experience is helpful to other researchers pursuing similar goals.


Author(s):  
Julia Puaschunder

Today enormous data storage capacities and computational power in the e-big data era have created unforeseen opportunities for big data hoarding corporations to reap hidden benefits from individuals' information sharing, which occurs bit by bit in small tranches over time. Behavioral economics describes human decision-making fallibility over time but has—to this day—not covered the problem of individuals' decisions to share information about themselves in tranches on social media and big data administrators being able to reap a benefit from putting data together over time and reflecting the individual's information in relation to big data of others.


Author(s):  
Julia Puaschunder

Today enormous data storage capacities and computational power in the e-big data era have created unforeseen opportunities for big data hoarding corporations to reap hidden benefits from individuals' information sharing, which occurs bit by bit in small tranches over time. Behavioral economics describes human decision-making fallibility over time but has—to this day—not covered the problem of individuals' decision to share information about themselves in tranches on social media and big data administrators being able to reap a benefit from putting data together over time and reflecting the individual's information in relation to big data of others. The decision-making fallibility inherent in individuals having problems understanding the impact of their current information sharing in the future is introduced as hyper-hyperbolic discounting decision-making predicament.


2020 ◽  
Vol 7 (2) ◽  
pp. 205395172093998 ◽  
Author(s):  
Kristin B Sandvik

The intervention attempts to engage critically with the Smittestopp app as a specifically Norwegian technofix. Culturally and politically, much of the Covid-19 response and the success of social distancing rules have been organized around the widespread trust in the government and public health authorities, and a focus on the citizens’ duty to contribute to the dugnaðr. The intervention argues that Smittestopp has been co-created by the mobilization of trust and dugnaðr, resulting in the launch of an incomplete and poorly defined data-hoarding product with significant vulnerabilities.


Author(s):  
Julia Puaschunder

Today enormous data storage capacities and computational power in the e-big data era have created unforeseen opportunities for big data hoarding corporations to reap hidden benefits from individuals' information sharing, which occurs bit by bit in small tranches over time. Behavioral economics describes human decision-making fallibility over time but has—to this day—not covered the problem of individuals' decision to share information about themselves in tranches on social media and big data administrators being able to reap a benefit from putting data together over time and reflecting the individual's information in relation to big data of others. The decision-making fallibility inherent in individuals having problems understanding the impact of their current information sharing in the future is introduced as hyper-hyperbolic discounting decision-making predicament.


2019 ◽  
Vol 2 ◽  
Author(s):  
Lyubomir Penev

"Data ownership" is actually an oxymoron, because there could not be a copyright (ownership) on facts or ideas, hence no data onwership rights and law exist. The term refers to various kinds of data protection instruments: Intellectual Property Rights (IPR) (mostly copyright) asserted to indicate some kind of data ownership, confidentiality clauses/rules, database right protection (in the European Union only), or personal data protection (GDPR) (Scassa 2018). Data protection is often realised via different mechanisms of "data hoarding", that is witholding access to data for various reasons (Sieber 1989). Data hoarding, however, does not put the data into someone's ownership. Nonetheless, the access to and the re-use of data, and biodiversuty data in particular, is hampered by technical, economic, sociological, legal and other factors, although there should be no formal legal provisions related to copyright that may prevent anyone who needs to use them (Egloff et al. 2014, Egloff et al. 2017, see also the Bouchout Declaration). One of the best ways to provide access to data is to publish these so that the data creators and holders are credited for their efforts. As one of the pioneers in biodiversity data publishing, Pensoft has adopted a multiple-approach data publishing model, resulting in the ARPHA-BioDiv toolbox and in extensive Strategies and Guidelines for Publishing of Biodiversity Data (Penev et al. 2017a, Penev et al. 2017b). ARPHA-BioDiv consists of several data publishing workflows: Deposition of underlying data in an external repository and/or its publication as supplementary file(s) to the related article which are then linked and/or cited in-tex. Supplementary files are published under their own DOIs to increase citability). Description of data in data papers after they have been deposited in trusted repositories and/or as supplementary files; the systme allows for data papers to be submitted both as plain text or converted into manuscripts from Ecological Metadata Language (EML) metadata. Import of structured data into the article text from tables or via web services and their susequent download/distribution from the published article as part of the integrated narrative and data publishing workflow realised by the Biodiversity Data Journal. Publication of data in structured, semanticaly enriched, full-text XMLs where data elements are machine-readable and easy-to-harvest. Extraction of Linked Open Data (LOD) from literature, which is then converted into interoperable RDF triples (in accordance with the OpenBiodiv-O ontology) (Senderov et al. 2018) and stored in the OpenBiodiv Biodiversity Knowledge Graph Deposition of underlying data in an external repository and/or its publication as supplementary file(s) to the related article which are then linked and/or cited in-tex. Supplementary files are published under their own DOIs to increase citability). Description of data in data papers after they have been deposited in trusted repositories and/or as supplementary files; the systme allows for data papers to be submitted both as plain text or converted into manuscripts from Ecological Metadata Language (EML) metadata. Import of structured data into the article text from tables or via web services and their susequent download/distribution from the published article as part of the integrated narrative and data publishing workflow realised by the Biodiversity Data Journal. Publication of data in structured, semanticaly enriched, full-text XMLs where data elements are machine-readable and easy-to-harvest. Extraction of Linked Open Data (LOD) from literature, which is then converted into interoperable RDF triples (in accordance with the OpenBiodiv-O ontology) (Senderov et al. 2018) and stored in the OpenBiodiv Biodiversity Knowledge Graph In combination with text and data mining (TDM) technologies for legacy literature (PDF) developed by Plazi, these approaches show different angles to the future of biodiversity data publishing and, lay the foundations of an entire data publishing ecosystem in the field, while also supplying FAIR (Findable, Accessible, Interoperable and Reusable) data to several interoperable overarching infrastructures, such as Global Biodiversity Information Facility (GBIF), Biodiversity Literature Repository (BLR), Plazi TreatmentBank, OpenBiodiv, as well as to various end users.


Author(s):  
Julia Puaschunder

Sustainability management has originally and—to this day—primarily been focused on environmental aspects. Today, enormous data storage capacities and computational power in the e-big data era have created unforeseen opportunities for big data hoarding corporations to reap hidden benefits from an individual's information sharing, which occurs bit by bit over time. This article presents a novel angle of sustainability, which is concerned with sensitive data protection given by the recently detected trade-off predicament between privacy and information sharing in the digital big data age. When individual decision makers face the privacy versus information sharing predicament in their corporate leadership, dignity and utility considerations could influence risk management and sustainability operations. Yet, to this day, there has not been a clear connection between dignity and utility of privacy and information sharing as risk management and sustainability drivers. The chapter unravels the legal foundations of dignity in privacy but also the behavioral economics of utility in communication and information sharing in order to draw a case of dignity and utility to be integrated into contemporary corporate governance, risk management and sustainability considerations of e-innovation.


Sign in / Sign up

Export Citation Format

Share Document