scholarly journals Multifactorial engineering of biomimetic membranes for batteries with multiple high-performance parameters

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Mingqiang Wang ◽  
Ahmet E. Emre ◽  
Ji-Young Kim ◽  
Yiting Huang ◽  
Li Liu ◽  
...  

AbstractLithium–sulfur (Li–S) batteries have a high specific capacity, but lithium polysulfide (LPS) diffusion and lithium dendrite growth drastically reduce their cycle life. High discharge rates also necessitate their resilience to high temperature. Here we show that biomimetic self-assembled membranes from aramid nanofibers (ANFs) address these challenges. Replicating the fibrous structure of cartilage, multifactorial engineering of ion-selective mechanical, and thermal properties becomes possible. LPS adsorption on ANF surface creates a layer of negative charge on nanoscale pores blocking LPS transport. The batteries using cartilage-like bioinspired ANF membranes exhibited a close-to-theoretical-maximum capacity of 1268 mAh g−1, up to 3500+ cycle life, and up to 3C discharge rates. Essential for safety, the high thermal resilience of ANFs enables operation at temperatures up to 80 °C. The simplicity of synthesis and recyclability of ANFs open the door for engineering high-performance materials for numerous energy technologies.

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Quan Zong ◽  
Wei Du ◽  
Chaofeng Liu ◽  
Hui Yang ◽  
Qilong Zhang ◽  
...  

AbstractAmmonium vanadate with bronze structure (NH4V4O10) is a promising cathode material for zinc-ion batteries due to its high specific capacity and low cost. However, the extraction of $${\text{NH}}_{{4}}^{ + }$$ NH 4 + at a high voltage during charge/discharge processes leads to irreversible reaction and structure degradation. In this work, partial $${\text{NH}}_{{4}}^{ + }$$ NH 4 + ions were pre-removed from NH4V4O10 through heat treatment; NH4V4O10 nanosheets were directly grown on carbon cloth through hydrothermal method. Deficient NH4V4O10 (denoted as NVO), with enlarged interlayer spacing, facilitated fast zinc ions transport and high storage capacity and ensured the highly reversible electrochemical reaction and the good stability of layered structure. The NVO nanosheets delivered a high specific capacity of 457 mAh g−1 at a current density of 100 mA g−1 and a capacity retention of 81% over 1000 cycles at 2 A g−1. The initial Coulombic efficiency of NVO could reach up to 97% compared to 85% of NH4V4O10 and maintain almost 100% during cycling, indicating the high reaction reversibility in NVO electrode.


2012 ◽  
Vol 1440 ◽  
Author(s):  
Jiajia Tan ◽  
Ashutosh Tiwari

ABSTRACTLi2FeP2O7 is a newly developed polyanionic cathode material for high performance lithium ion batteries. It is considered very attractive due to its large specific capacity, good thermal and chemical stability, and environmental benignity. However, the application of Li2FeP2O7 is limited by its low ionic and electronic conductivities. To overcome the above problem, a solution-based technique was successfully developed to synthesize Li2FeP2O7 powders with very fine and uniform particle size (< 1 μm), achieving much faster kinetics. The obtained Li2FeP2O7 powders were tested in lithium ion batteries by measurements of cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic charge/discharge cycling. We found that the modified Li2FeP2O7 cathode could maintain a relatively high capacity even at fast discharge rates.


2015 ◽  
Vol 3 (35) ◽  
pp. 17951-17955 ◽  
Author(s):  
Shibing Ni ◽  
Jicheng Zhang ◽  
Jianjun Ma ◽  
Xuelin Yang ◽  
Lulu Zhang

A high performance Li3VO4/N-doped C anode was successfully prepared, which shows high specific capacity and excellent cycle performance.


RSC Advances ◽  
2016 ◽  
Vol 6 (109) ◽  
pp. 107768-107775 ◽  
Author(s):  
Yew Von Lim ◽  
Zhi Xiang Huang ◽  
Ye Wang ◽  
Fei Hu Du ◽  
Jun Zhang ◽  
...  

Tungsten disulfide nanoflakes grown on plasma activated three dimensional graphene networks. The work features a simple growth of TMDs-based LIBs anode materials that has excellent rate capability, high specific capacity and long cycling stability.


2020 ◽  
Vol 49 (40) ◽  
pp. 14115-14122
Author(s):  
Mingchen Shi ◽  
Qiang Wang ◽  
Junwei Hao ◽  
Huihua Min ◽  
Hairui You ◽  
...  

Cobalt sulfide (Co4S3) is considered as one of the most promising anode materials for lithium-ion batteries owing to its high specific capacity.


2020 ◽  
Vol 7 (2) ◽  
pp. 477-486 ◽  
Author(s):  
Shiyi Zhang ◽  
Dongzhi Yang ◽  
Ming Zhang ◽  
Yaxin Liu ◽  
Ting Xu ◽  
...  

Novel bimetallic nickel cobalt telluride nanotubes are grown on nickel foam by solvothermal synthesis and ion-exchange reaction for constructing self-standing hybrid supercapacitor electrodes with high specific capacity and electrical conductivity.


2020 ◽  
Vol 1 (3) ◽  
pp. 481-494 ◽  
Author(s):  
Jingzhou Ling ◽  
Hanbo Zou ◽  
Wei Yang ◽  
Shengzhou Chen

The NiCoP@C-ULAs composite with high conductivity, abundant pores and good physical structure shows high specific capacity and excellent cycling stability.


2019 ◽  
Vol 48 (42) ◽  
pp. 16000-16007 ◽  
Author(s):  
Jiapeng He ◽  
Lu Shen ◽  
Cuiping Wu ◽  
Can Guo ◽  
Qingpeng Wang ◽  
...  

Ni/Ni2P heterostructures encapsulated in 3D porous carbon networks deliver high specific capacity and good cycle life as the anode for lithium ion batteries.


2015 ◽  
Vol 3 (5) ◽  
pp. 2158-2165 ◽  
Author(s):  
Xueying Li ◽  
Yuanyuan Ma ◽  
Lei Qin ◽  
Zhiyun Zhang ◽  
Zhong Zhang ◽  
...  

The composites of graphene and α-Fe2O3 nanoaggregates as the anode of lithium ion battery exhibit stable cyclability and a high specific capacity of 1787.27 mA h g−1 at 0.1 A g−1.


RSC Advances ◽  
2015 ◽  
Vol 5 (10) ◽  
pp. 7356-7362 ◽  
Author(s):  
Minchan Li ◽  
Wenxi Wang ◽  
Mingyang Yang ◽  
Fucong Lv ◽  
Lujie Cao ◽  
...  

A novel microcuboid-shaped C–Fe3O4 assembly consisting of ultrafine nanoparticles derived from Fe–MOFs exhibits a greatly enhanced performance with high specific capacity, excellent cycling stability and good rate capability as anode materials for lithium ion batteries.


Sign in / Sign up

Export Citation Format

Share Document